思路:无向图中割点个数的判定。直接Tarjan抛一边就好了。
如果u是这个搜索树的根且有多个儿子节点,,,那么这个根是割点,因为去掉这个点后,他的儿子间是不能连通的。
如果u 不是根,如果它的某个儿子节点low[v] >= dfn[u]那么u也是一个割点。
// #pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <algorithm> #include <iomanip> #include <sstream> #include <string> #include <stack> #include <queue> #include <deque> #include <vector> #include <map> #include <set> #include <stdio.h> #include <string.h> #include <math.h> #include <stdlib.h> #include <limits.h> // #define DEBUG #ifdef DEBUG #define debug(...) printf( __VA_ARGS__ ) #else #define debug(...) #endif #define MEM(x,y) memset(x, y,sizeof x) using namespace std; typedef long long LL; typedef unsigned long long ULL; typedef pair<int,int> ii; const int inf = 1 << 30; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; const int maxn = 10010; int dfn[maxn], low[maxn]; int Time; int sum; vector<int> G[maxn]; set<int> s; void Tarjan(int u,int fa){ dfn[u] =low[u] = Time++; int child = 0, cnt = 0; for (int i = 0;i < G[u].size();++i){ int v = G[u][i]; if (v == fa && cnt == 0){ cnt = 1; continue; } if (dfn[v] == -1){ Tarjan(v, u); low[u] = min(low[u], low[v]); if (fa == -1 && child != 0) { // printf("(%d,%d)\n",u,v); s.insert(u); } if (fa != -1 && low[v] >= dfn[u]){ // printf("(%d,%d)\n",u,v); s.insert(u); } child++; } else low[u] = min(low[u], dfn[v]); } } int main() { // freopen("in.txt","r",stdin); // freopen("out.txt","w",stdout); int t; int icase = 0; int n, m; scanf("%d",&t); while(t--){ scanf("%d%d",&n,&m); for (int i = 1;i <= n;++i) G[i].clear(); while(m--){ int u,v; scanf("%d%d",&u,&v); G[u].push_back(v); G[v].push_back(u); } memset(dfn, -1,sizeof dfn); sum = Time = 0; s.clear(); for (int i = 1;i <= n;++i) if (dfn[i] == -1) Tarjan(i, -1); printf("Case %d: %d\n", ++icase, (int)s.size()); } return 0; }