王家林-DT大数据梦工厂系列教程
分别用 scala 与 java 编写第一个Spark应用程序之 Word Count
package cool.pengych.spark import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD.rddToPairRDDFunctions /** * author : pengych * date : 2016/04/29 * function: first Spark program by eclipse */ object WordCount { def main(args: Array[String]): Unit = { /* * 1、创建配置对象SparkConf * 作用:设置Spark程序运行时的配置信息,eg、通过setMaster来设置程序要链接的Spark集群的Master的URL, * 如果设置为local,则表示Spark程序运行在本地 */ val conf = new SparkConf() conf.setAppName("my first spark app ") //设置应用程序的名称,在程序运行的监控界面可以看到 //conf.setMaster("local")//,此时程序在本地运行,不需要安装Spark集群 /* * 2、创建SparkContext对象 * 简介:Spark程序所有功能的唯一入口,整个Spark应用程序中最重要的对象 * 作用:初始化Spark应用程序运行所需要的核心组件,包括:DAGScheduler、TaskScheduler、SchedulerBackend * 同时还会负责Spark程序往Master注册程序等 */ val sc = new SparkContext(conf) //创建SparkContext对象,通过conf定制Spark运行时的具体参数与配置信息 /* * 3、创建RDD * 根据具体的数据来源(HDFS、HBase、Local FS 、DB、S3等)通过SparkContext来创建RDD * RDD的创建基本有三种方式:根据外部的数据来源(例如 HDFS)、根据scala集合、由其他的RDD操作 * 数据会被RDD划分成为一系列的Partitions,分配到每个Partition的数据属于一个Task的处理范畴 */ //val lines = sc.textFile("/opt/spark-1.6.0-bin-hadoop2.6/README.md",1); //本地部署模式下用 val lines2 = sc.textFile("hdfs://112.74.21.122:9000/input/hdfs") /* * 4、对初始的RDD进行Transformation级别的处理,例如map、filter等高阶函数的编程,来进行具体的数据计算 * 注:Spark是基于RDD操作的,每一个算子操作后的返回结果基本都是RDD */ val words = lines2.flatMap {line => line.split(" ") } // 对每一行的字符串进行单词拆分并把所有行的拆分结果通过flat合并成为 val pairs = words.map { word => (word,1) }// 对每个单词实例初始计算为 1 val wordCounts = pairs.reduceByKey(_+_) //对相同的Key进行Value的累计(包括Local和Reducer级别同时Reduce) wordCounts.collect.foreach(wordNumberPair => println(wordNumberPair._1 +":" + wordNumberPair._2)) /* * 5、释放资源 */ sc.stop } }
package cool.pengych.spark.SparkApps; import java.util.Arrays; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.api.java.function.VoidFunction; import scala.Tuple2; /** * Word Count - java 版本 * @author pengyucheng * */ public class WordCount { @SuppressWarnings("serial") public static void main(String[] args) { //创建SparkContext实例对象,并指定实例参数 SparkConf conf = new SparkConf().setAppName("Spark WordCount of java version").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); JavaRDD<String> lines = sc.textFile("/home/pengyucheng/java/wordcount.txt"); //拆分成单词集合 JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() { public Iterable<String> call(String line) throws Exception { return Arrays.asList(line.split(" ")); } }); //将每个单词实例计数为1 JavaPairRDD<String,Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() { public Tuple2<String, Integer> call(String word) throws Exception { // TODO Auto-generated method stub return new Tuple2<String,Integer>(word,1); } }); //统计每个单词出现的总数 JavaPairRDD<String,Integer> wordsCount = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() { public Integer call(Integer v1, Integer v2) throws Exception { return v1 + v2; } }); wordsCount.foreach(new VoidFunction<Tuple2<String,Integer>>() { public void call(Tuple2<String, Integer> pairs) throws Exception { System.out.println(pairs._1+":"+pairs._2); } }); sc.close(); } }
java版使用Eclipse + Maven插件管理相关依赖包的,这里贴出 pom.xml 文件中配置,方便后续使用
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>cool.pengych.spark</groupId> <artifactId>SparkApps</artifactId> <version>0.0.1-SNAPSHOT</version> <packaging>jar</packaging> <name>SparkApps</name> <url>http://maven.apache.org</url> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>3.8.1</version> <scope>test</scope> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.10</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.10</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.10</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka_2.10</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-graphx_2.10</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_2.10</artifactId> <version>1.6.1</version> </dependency> <dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-jdbc</artifactId> <version>1.2.1</version> </dependency> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpclient</artifactId> <version>4.4.1</version> </dependency> <dependency> <groupId>org.apache.httpcomponents</groupId> <artifactId>httpcore</artifactId> <version>4.4.1</version> </dependency> </dependencies> <build> <sourceDirectory>src/main/java</sourceDirectory> <testSourceDirectory>src/main/test</testSourceDirectory> <plugins> <plugin> <artifactId>maven-assembly-plugin</artifactId> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> <archive> <manifest> <mainClass /> </manifest> </archive> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.codehaus.mojo</groupId> <artifactId>exec-maven-plugin</artifactId> <version>1.2.1</version> <executions> <execution> <goals> <goal>exec</goal> </goals> </execution> </executions> <configuration> <executable>java</executable> <includeProjectDependencies>true</includeProjectDependencies> <includePluginDependencies>false</includePluginDependencies> <classpathScope>compile</classpathScope> <mainClass>cool.pengych.spark.SparkAjarpps</mainClass> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.6</source> <target>1.6</target> </configuration> </plugin> </plugins> </build> </project>
四、WordCount执行流程图解
本地顺利运行了,但是在集群环境下跑WordCount程序时出现以下异常,目测是网络原因导致的,目前没有找到解决办法,故先记录下来,后续进一步分析:
16/04/28 12:15:58 WARN netty.NettyRpcEndpointRef: Error sending message [message = RemoveExecutor(0,java.io.IOException: Failed to create directory /home/hadoop/spark-1.6.0-bin-hadoop2.6/work/app-20160428121358-0004/0)] in 1 attempts
org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 120 seconds. This timeout is controlled by spark.rpc.askTimeout
at org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63)
at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:33)