数据按列排序



对一些有指定分隔符的数据,按照对应列数进行自定义排序


原始数据:
hadoop@sh-hadoop:more sourText.txt 
hadoop|234|2346|sdfasdgadfgdfg
spark|534|65745|fhsdfghdfgh
hive|65|6585|shsfghfgh
hbase|98|456|jhgjdfghj
tachyon|345|567|sfhrtyhert
kafka|455|567|dghrtyh
storm|86|345|dgsdfg
redis|45|56|ergerg
sqoop|45|765|fghd
flume|34|67|sdfgrty
oozie|23|45|adfgdfg
pig|54|456|dfg
zookeeper|23|543|dfgd
solr|75|54|ertgergt



1、用Mr进行排序,按照第2列进行降序排序:
hadoop@sh-hadoop:/home/hadoop/blb$ hdfs dfs -text /user/hadoop/libin/input/sourText.txt | wc -l
14
hadoop@sh-hadoop:/home/hadoop/blb$ hdfs dfs -text /user/hadoop/libin/Domain800_level2/merge1/out1/* | wc -l
14
hadoop@sh-hadoop:/home/hadoop/blb$ hdfs dfs -text /user/hadoop/libin/Domain800_level2/merge1/out1/* | more
spark|534|65745|fhsdfghdfgh
kafka|455|567|dghrtyh
tachyon|345|567|sfhrtyhert
hadoop|234|2346|sdfasdgadfgdfg
hbase|98|456|jhgjdfghj
storm|86|345|dgsdfg
solr|75|54|ertgergt
hive|65|6585|shsfghfgh
pig|54|456|dfg
redis|45|56|ergerg
sqoop|45|765|fghd
flume|34|67|sdfgrty
oozie|23|45|adfgdfg
zookeeper|23|543|dfgd
hadoop@sh-hadoop:/home/hadoop/blb$ 


2、用shell命令进行统计:
-r:sort默认的排序方式是升序,如果想改成降序,加个-r就搞定了。
-n:就要使用-n选项,来告诉sort,“要以数值来排序”!
-t:sort提供了-t选项,后面可以设定间隔符。
-k:指定了间隔符之后,就可以用-k来指定列数了。

2.1、按照第二列进行降序排序:

sort -t "|" -nrk2 sourText.txt 

hadoop@sh-hadoop:/home/hadoop/blb$ sort -t "|" -nrk2 sourText.txt 
spark|534|65745|fhsdfghdfgh
kafka|455|567|dghrtyh
tachyon|345|567|sfhrtyhert
hadoop|234|2346|sdfasdgadfgdfg
hbase|98|456|jhgjdfghj
storm|86|345|dgsdfg
solr|75|54|ertgergt
hive|65|6585|shsfghfgh
pig|54|456|dfg
sqoop|45|765|fghd
redis|45|56|ergerg
flume|34|67|sdfgrty
zookeeper|23|543|dfgd
oozie|23|45|adfgdfg

2.2、按照第三列进行降序排序:
hadoop@sh-hadoop:/home/hadoop/blb$ sort -t "|" -nrk3 sourText.txt 
spark|534|65745|fhsdfghdfgh
hive|65|6585|shsfghfgh
hadoop|234|2346|sdfasdgadfgdfg
sqoop|45|765|fghd
tachyon|345|567|sfhrtyhert
kafka|455|567|dghrtyh
zookeeper|23|543|dfgd
pig|54|456|dfg
hbase|98|456|jhgjdfghj
storm|86|345|dgsdfg
flume|34|67|sdfgrty
redis|45|56|ergerg
solr|75|54|ertgergt
oozie|23|45|adfgdfg


排序后倒入新文件中:

 sort -t "|" -nrk2 part-r-00000 |more > merge.txt



附录:

MapReduce实现代码:

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import mapreduce.SegmentUtil;

public class Domain_merge {
	public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
		Configuration conf = new Configuration();
		String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
		if (otherArgs.length != 2) {
			System.err.println("Usage Domain800_level2 <input> <输出结果>");
			System.exit(2);
		}

		Job job4 = Job.getInstance(conf, Domain_merge.class.getSimpleName());
		job4.setJarByClass(Domain_merge.class);
		job4.setMapOutputKeyClass(Toptaobao500.class);
		job4.setMapOutputValueClass(Text.class);
		job4.setOutputKeyClass(Text.class);
		job4.setOutputValueClass(NullWritable.class);
		//job4.setPartitionerClass(MyPartitioner.class);
		job4.setMapperClass(MyMapper2.class);
		job4.setNumReduceTasks(1);
		job4.setReducerClass(MyReducer2.class);
		job4.setInputFormatClass(TextInputFormat.class);
		job4.setOutputFormatClass(TextOutputFormat.class);
		FileInputFormat.addInputPath(job4, new Path(otherArgs[0]));
		FileOutputFormat.setOutputPath(job4, new Path(otherArgs[1]));
		job4.waitForCompletion(true);
	}
	/**
	 * 第二个Job排序
	 */
	public static class MyMapper2 extends Mapper<LongWritable, Text, Toptaobao500, Text>{
		Toptaobao500 mw=new Toptaobao500();
		@Override
		protected void map(LongWritable key, Text value,
				Mapper<LongWritable, Text, Toptaobao500, Text>.Context context)
						throws IOException, InterruptedException {
			String[] spl=value.toString().split("\\|");
			String trait=spl[0].trim();
			String uv=spl[1].trim();
			String pv=spl[2].trim();
			String fenlei=spl[3].trim();
			
			mw.setkind(trait+"|"+uv+"|"+pv+"|"+fenlei);
			mw.setCount(Long.parseLong(uv.trim()));
			context.write(mw, new Text(value));
		}
	}
	public static class MyReducer2 extends Reducer<Toptaobao500, Text, Text, NullWritable>{
		@Override
		protected void reduce(Toptaobao500 k4, Iterable<Text> v4s, Reducer<Toptaobao500, Text, Text, NullWritable>.Context context)
				throws IOException, InterruptedException {
			for (Text v4 : v4s) {
				context.write(v4, NullWritable.get());
			}
		}
	}
	public static class Toptaobao500 implements WritableComparable<Toptaobao500> {
		String kind;
		Long count;

		public Toptaobao500() {
		}

		public Toptaobao500(String kind, Long count) {
			this.kind = kind;
			this.count = count;
		}

		public void setkind(String kind) {
			this.kind = kind;
		}

		public void setCount(Long l) {
			this.count = l;
		}

		public String getKind() {
			return this.kind;
		}

		public Long getCount() {
			return this.count;
		}

		@Override
		public void write(DataOutput out) throws IOException {
			out.writeUTF(kind);
			out.writeLong(count);
		}

		@Override
		public void readFields(DataInput in) throws IOException {
			this.kind = in.readUTF();
			this.count = in.readLong();
		}

		@Override
		public int compareTo(Toptaobao500 o) {
			long temp=this.count-o.count;  
	        if(temp>0){  
	            temp=-1;  
	            return (int) temp;  
	        }else if(temp<0){  
	            temp=1;  
	            return (int) temp;  
	        }  
	        return (int) (this.count-o.count); 
		}
	    @Override  
	    public boolean equals(Object obj) {  
	        return super.equals(obj);  
	    }  
	    @Override  
	    public int hashCode() {  
	        return super.hashCode();  
	    } 
		@Override
		public String toString() {
			return this.kind;
		}
	}
}





你可能感兴趣的:(数据按列排序)