[LeetCode4]Median of Two Sorted Arrays


There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

Analysis

O(n)的解法比较直观,直接merge两个数组,然后求中间值。而对于O(log(m+n))显然是用二分搜索了, 相当于“Kth element in 2 sorted array”的变形。如果(m+n)为奇数,那么找到“(m+n)/2+1 th element in 2 sorted array”即可。如果(m+n)为偶数,需要找到(m+n)/2 th 及(m+n)/2+1 th,然后求平均。

而对于“Kth element in 2 sorted array”, 如下图,两个中位数 A[m/2] 和 B[n/2], 可以将数组划分为四个部分。而丢弃哪一个部分取决于两个条件:1, (m/2 + n/2)?k;2,A[m/2] ? B[n/2];


如果 (m/2 + n/2) > k,那么意味着,当前中位数取高了,正确的中位数要么在 Section 1或者Section3中。如果A[m/2] > B[n/2], 意味着中位数肯定不可能在Section 2里面,那么新的搜索可以丢弃这个区间段了。同理可以推断出余下三种情况,如下所示:

If (m/2+n/2+1) > k &&  a m/2   b n /2  , drop  Section  2
If (m/2+n/2+1) > k && a m/2   b n /2  , drop   Section  4
If  (m/2+n/2+1)  k && a m/2  >  b n /2 ,    drop  Section 3
If (m/2+n/2+1)  k && a m/2   b n /2  ,   drop  Section  1


简单的说,就是或者丢弃最大中位数的右区间,或者丢弃最小中位数的左区间。

java

public double findMedianSortedArrays(int A[], int B[]) {
		int n = A.length;
		int m = B.length;
		if((n+m)%2 == 0)
			return (GetMedian(A, n, B, m, (n+m)/2)+ GetMedian(A, n, B, m, (m+n)/2+1))/2.0;
		else
			return GetMedian(A, n, B, m, (m+n)/2+1);
    }
	public int GetMedian(int a[], int n, int b[],int m, int k){
		if(n<=0) return b[k-1];
		if(m<=0) return a[k-1];
		if(k<=1) return Math.min(a[0], b[0]);
		if(a[n/2]>=b[m/2]){
			if((n/2+m/2+1)>=k)
				return GetMedian(a, n/2, b, m, k);
			else
				return GetMedian(a, n, Arrays.copyOfRange(b, m/2+1, m), m-m/2-1, k-m/2-1);
		}else {
			if((n/2+1+m/2)>=k)
				return GetMedian(a, n, b,m/2, k);
			else
				return GetMedian(Arrays.copyOfRange(a, n/2+1, n), n-n/2-1, b, m, k-n/2-1);
		}
	}
c++

double findMedianSortedArrays(int A[], int m, int B[], int n) {
        if((n+m)%2 == 0)
            return (GetMedian(A, m,B,n,(m+n)/2)+GetMedian(A,m,B,n,(m+n)/2+1))/2.0;
        else
            {return GetMedian(A, m, B, n, (m+n)/2+1);}
    
    }
    int GetMedian(int a[], int n, int b[], int m, int k)
    {
        if(n<=0) return b[k-1];
        if(m<=0) return a[k-1];
        if(k<=1) return min(a[0], b[0]);
        if(b[m/2] >= a[n/2]){
            if((n/2+m/2+1)>=k)
                return GetMedian(a,n,b,m/2,k);
            else
                return GetMedian(a+n/2+1,n-(n/2+1),b,m,k-(n/2+1));
        }
        else{
            if((n/2+m/2+1)>=k)
                return GetMedian(a,n/2,b,m,k);
            else
                return GetMedian(a,n,b+(m/2+1),m-(m/2+1),k-(m/2+1));
        }
    }



你可能感兴趣的:(LeetCode,搜索,二分法)