- 人工智能之数学基础:基变换和坐标变换的区别
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能机器学习算法基变换坐标变换线性变换
本文重点基变换和坐标变换是线性代数中的两个重要概念,它们描述了向量在不同基底或坐标系下的表示和转换关系。矩阵矩阵不仅可以作为线性变换的描述,而且可以作为一组基地描述。而作为变换的矩阵,不但可以把线性空间中的一个点给变换到另一个点去,而且也能够把线性空间中的一个坐标系(基)表换到另一个坐标系(基)去,这就是基变换和坐标变换。定义与本质基变换:定义:基变换是指向量在不同基底下表示的关系的数学描述。它涉
- 光伏储能直流系统MATLAB仿真(PV光伏阵列+Boost DCDC变换器+负载+双向DCDC变换器+锂离子电池系统)
yyds_2201
matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述光伏储能直流系统MATLAB仿真研究一、引言二、光伏储能直流系统的基本构成(一)PV光伏阵列(二)BoostDC/DC变换器(三)负载(四)双向DC/DC变换器(五)锂离子电池系统(六)控制模块(七)观测模块三、MATLAB仿真模型建立(一)光伏阵列模型(二)B
- 蓝桥杯新手算法练习题单|冲击国一(三)
小咖拉眯
蓝桥杯蓝桥杯java数据结构算法dfsbfs
此题单为算法基础精选题单,包含蓝桥杯常考考点以及各种经典算法,可以帮助你打牢基础,查漏补缺。本题单目标是冲击蓝桥杯省一国一,团体程序天梯赛个人国三、XCPC区域赛铜/银奖前言本次题单重点关注模拟类问题,DFS问题,BFS问题目录模拟类题型一、最大子矩阵二、世纪末的星期三、图像相似度四、操作系统DFS题型五、老子的全排列呢六、皇后问题七、池塘BFS题型八、迷宫九、八数码问题十、字符变换一、最大子矩阵
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- 深度学习框架PyTorch——从入门到精通(4)数据转换
Fansv587
Torch框架学习深度学习pytorch人工智能python经验分享
转换(Transforms)很多时候,数据并不总是以训练机器学习算法所需的最终处理形式出现。所以我们需要使用变换对数据进行一些处理,使其适合训练。所有TorchVision数据集都有两个参数——transform来修改特征,target_transform来修改标签——接受包含转换逻辑的可调用项。torchvision.transform模块提供了几个开箱即用的转换。FashionMNIST数据集
- [RA-L 2023] Coco-LIC:基于非均匀 B 样条的连续时间紧密耦合 LiDAR-惯性-相机里程计
十年一梦实验室
c++
这段代码是一个基于C++的均匀B样条(UniformB-spline)实现,专门用于表示SE(3)变换(即三维空间中的刚体变换,包括旋转和平移)。以下是对代码的总结:1.许可证和版权使用BSD3-ClauseLicense,允许在满足条件的情况下自由分发和修改。版权归VladyslavUsenko和NikolausDemmel所有,属于Basalt项目的一部分。2.功能概述文件定义了一个模板类Se
- 图像处理之白平衡(附源码)
FPGA工程狮-阿水
Python图像处理图像处理人工智能pythonisp
图像处理之白平衡(附源码)概要白平衡(WhiteBalance)是图像处理和摄影中的一种技术,旨在消除由于光源色温差异导致的颜色偏差,使得图像中的白色和其他颜色呈现出自然、真实的效果。基本概念白平衡是调整图像中各个颜色通道(红色、绿色和蓝色)的亮度和色彩平衡,以消除由不同光源(如日光、白炽灯、荧光灯等)产生的色偏。其目的是让图像看起来像是在中性白光下拍摄的,从而确保图像中的白色看起来确实是白色,其
- 《基于机器学习的负荷曲线聚类算法对比与改进:K-L-isodata的创新性研究》
TWHiwhjig
机器学习算法聚类
基于机器学习的负荷曲线聚类包括kmeansisodata和改进的L-isodata以及在其基础上再次进行改进的K-L-isodata(有创新性),四者通过评价指标进行了对比精品代码可修改性极高有参考文献ID:93150688324967700自律的电气人基于机器学习的负荷曲线聚类是一种基于数据分析和模式识别的技术,它可以帮助我们对系统的负荷变化进行分类和理解。在负荷曲线聚类的研究中,K-means
- 征程 6 VP简介与单算子实操
自动驾驶算法
1.如何理解VPVP,全称VisionProcess,指UCP中的视觉处理功能模块。Backends,指UCP框架中的可分配处理单元。VP模块主要用于模型的前后处理环节,在地平线统一架构中,多种硬件均已搭载了图像处理的算子,而VP模块将图像处理相关的硬件调用进行了封装,通过设置backend来选择不同的硬件方案(若不指定backend,UCP会自动适配负载更低的处理单元),从而平衡开发板负载。VP
- OpenCV-Python实战(1)——OpenCV简介与图像处理基础
数字化转型2025
AI人工智能方向opencvpython图像处理
OpenCV介绍Python安装OpenCV:对于Linux和Windows操作系统,首先需要在shell或cmd中运行以下命令安装NumPy:pipinstallnumpy。然后再安装OpenCV,可以选择仅安装主模块包:pipinstallopencv-python,或者安装完整包(包括主模块和附加模块):pipinstallopencv-contrib-python。OpenCV主要模块:O
- 美颜特效类sdk在智能硬件中的场景应用是怎样的?
Face Beauty美颜SDK
实时音视频美颜sdk视频特效美颜智能硬件实时互动实时音视频
前言:FaceBeauty美颜特效SDK是由前相芯科技员工组建创办的新晋美颜厂商品牌,致力于为用户提供更真实自然的美颜效果,以极致性价比,降低高性能美颜的使用门槛。基于人脸识别和图像渲染技术,为客户提供美颜贴纸、美妆、美体、美发、哈哈镜、手势识别等人像人体特效功能,广泛应用于视频直播、一对一社交、短视频、美颜相机、智能硬件等场景。美颜特效类SDK在智能硬件中的应用场景日益广泛,结合实时图像处理、A
- 【工作记录】python使用总结
星光不负赶路人!
python
1.os库2.xlwt库3.xlrd库4.BeautifulSoup库5.panda库6.json库7.re正则8.ddddocr登录网站的时候,经常输入用户名和密码后会遇到验证码,ddddocr是一款强大的通用开源ocr识别库,具有高效、准确、易用的特点,广泛应用于图像处理和文字识别任务。importddddocrtry:login_page.wait_for_timeout(2000)#等待2
- OpenCV图像拼接(2)特征查找与图像匹配之基于仿射变换的图像匹配的一个类cv::detail::AffineBestOf2NearestMatcher
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述cv::detail::AffineBestOf2NearestMatcher是OpenCV库中用于实现基于仿射变换的图像匹配的一个类。这个类主要用于在图像拼接流程中,寻找图像间的对应关系,并假设图像间存在仿射变换(即考虑缩放、旋转和平移的变换)。它通过使用“最佳
- 南邮密码学实验:转轮密码机
Jarrycow
密码学学习密码学c++面向对象编程
南邮密码学实验:转轮密码机题目现代密码学教程第2版[谷利泽,郑世慧,杨义先编著]2015年版3.2.3(P53~55)解释输入一个字母根据对应的慢轮子、中轮子、快轮子的对应的变换,输出另一个字母每输入一个,慢轮子下转一格,慢轮子转一圈之后,中轮子下转一格,中轮子下转一圈,快轮子下转一格想法1、对于这个轮子来说,他的属性是固定的,也就是输入、输出,行为也是固定的,就左右数字匹配、旋转所以觉得用面向对
- 《突破性能瓶颈,用 Rust + WASM 实现浏览器端FFT加速300%实战》
煜bart
人工智能机器人
引言:当JavaScript遇上硬核计算**“为什么我的音频分析页面卡到崩溃?”这是前端工程师在实现实时频谱可视化时最常见的噩梦。传统JavaScript的FFT计算在万级数据点时就会引发严重卡顿,但今天我们将用**Rust+WebAssembly**的组合拳,在浏览器中实现**零依赖、300%加速的傅里叶变换**。无需WebGL黑魔法,直接上硬核代码!---###**一、血腥现场:JS的Type
- SciPy 安装指南
froginwe11
开发语言
SciPy安装指南引言SciPy是一个开源的Python科学计算库,它基于NumPy库,提供了大量的科学和工程计算功能。SciPy包含了用于优化、线性代数、积分、插值、信号和图像处理、特殊函数、统计分析、离散傅里叶变换等功能的模块。本文将详细介绍如何在您的系统上安装SciPy。安装前的准备在开始安装SciPy之前,请确保您的系统满足以下条件:您已安装Python,且版本在3.5或更高。您已安装pi
- 【新生必会】30个较难Python脚本,建议收藏。
.Boss.
信息可视化python人工智能算法开发语言机器学习
本篇较难,建议优先学习上篇;20个硬核Python脚本-CSDN博客接上篇文章,对于Pyhon的学习,上篇学习的结束相信大家对于Pyhon有了一定的理解和经验,学习完上篇文章之后再研究研究剩下的30个脚本你将会有所成就!加油!目录21、数据库连接-SQLite22、图像处理-Pillow23、图形界面-Tkinter24、文本生成-Faker25、加密和解密-cryptography26、Sock
- LeetCode 第6题:Z字形变换(Python3解法)
little student
LeetCodeleetcode算法职场和发展
文章目录1:问题描述2:问题分析2.1时间复杂度和空间复杂度2.2二维矩阵2.2.1构建矩阵2.2.2判断位置2.2.3边界2.2.4代码2.3改进的二维矩阵2.3.1代码2.4构造法2.4.1代码1:问题描述来源:LeetCode难度:中等问题详情:将一个给定字符串s根据给定的行数numRows,以从上往下、从左到右进行Z字形排列。比如输入字符串为“PAYPALISHIRING”行数为3时,排列
- DeepSeek在智慧物流管控中的全场景落地方案
猴的哥儿
笔记大数据交通物流python数据仓库微服务
一、智慧物流核心痛点与DeepSeek解决方案矩阵物流环节行业痛点DeepSeek技术方案价值增益仓储管理库存预测误差率>30%多模态时空预测模型库存周转率↑40%运输调度车辆空驶率35%强化学习动态调度引擎运输成本↓25%路径规划突发路况响应延迟>30分钟实时路况语义理解+自适应规划准时交付率↑18%异常检测50%异常依赖人工发现多传感器融合的异常模式识别异常发现时效↑6倍客户服务50%咨询需人
- 人工智能技术篇*卷(三)
code_stream
#人工智能人工智能
接下来,我们在神经网络方面继续展开神经网络多层感知机(MLP)解决问题:多层感知机是一种基本的前馈神经网络,可用于解决分类和回归问题。它通过多个神经元层的非线性变换,能够学习复杂的非线性关系,对数据进行分类或预测连续值。例如,在手写数字识别中,它可以从数字图像的像素数据中学习到特征模式,从而判断该数字是0-9中的哪一个;在房价预测中,根据房屋的面积、房间数量等特征预测房价。案例:以手写数字识别为例
- 力扣--数组6.Z字形变换
gotoc丶
leetcode算法c++c语言数据结构
思路分析处理特殊情况:如果numRows为1,那么字符排列与原字符串相同,无需进行转换,直接返回原字符串。定义和初始化变量:n:字符串长度。k:一个完整的“V”字形周期长度,计算公式为2*numRows-2。a:一个包含numRows个字符串的向量,用于存储每一行的字符。遍历字符串并填充每行字符:遍历字符串中的每个字符,通过计算确定字符属于哪一行,然后将该字符添加到对应的行。行的计算方式为min(
- 图像分割基础:使用Python和scikit-image库
0dayNu1L
机器学习项目实战python人工智能机器学习
大家好,今天我们将一起探讨图像分割的基础知识,并使用Python编程语言以及scikit-image库来实现一个简单的图像分割示例。图像分割是图像处理中的一项重要技术,它允许我们将图像划分为多个部分或对象,这对于图像分析和计算机视觉任务至关重要。0dayNu1L-CSDN博客目录一、环境准备二、图像分割示例1.导入必要的库2.读取并显示图像3.创建标签数组并进行阈值分割4.使用颜色表示标签三、结果
- Python库 - skimage
司南锤
PYTHON库python开发语言
skimage是scikit-image的缩写,是一个用于图像处理的Python库。提供了丰富的图像处理功能,包括图像滤波、边缘检测、形态学操作、特征提取、图像分割等。skimage是基于NumPy数组构建的,因此可以与NumPy和其他科学计算库(如scipy和matplotlib)无缝集成。安装可以使用pip来安装skimage:pipinstallscikit-image主要模块skimage
- scikit-image(Scikit-image 是用于图像处理的 Python 包,使用原生的 NumPy 数组作为图像对象)
Clark-dj
图像处理pythonnumpy
Scikitimage中文开发手册-开发者手册-腾讯云开发者社区-腾讯云昨天搜索一个函数时无意间发现这个网站,今天来学习一下,仅作学习笔记。measureskimage.measure.approximate_polygon(coords,...)近似具有指定公差的多边形链。skimage.measure.block_reduce(image,block_size)通过对局部块应用函数来下采样图像
- AI大模型从入门到精通,2025终极指南!好卷啊,又不能躺平,只能悄悄卷你们了!
大模型教程
人工智能大模型训练LLM知识库大模型大模型入门大模型学习
什么是AI大模型?AI大模型是指使用大规模数据和强大的计算能力训练出来的人工智能模型。这些模型通常具有高度的准确性和泛化能力,可以应用于各种领域,如自然语言处理、图像识别、语音识别等。为什么要学AI大模型?2024人工智能大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用,大模型作为其中的重要组成部分,正逐渐成为推动人工智能发展的重要引擎。大模型以其强大的数据处理和模式识别能力,广泛应用于
- C++ Primer Plus:第八章 - 函数探幽
我是一片小树叶
C++基础构建函数探幽
0、本章内容:内联函数。引用变量。如何按引用传递函数参数。默认参数。函数重载。函数模板。函数模板具体化。1、C++内联函数:为提高程序运行速度所做的一项改进。在函数声明前加上关键字inline,在函数定义前加上关键字inline。不能使用递归。2、引用变量:2.1创建引用变量指向相同的值和内存单元,会一起变换。引用在声明的时候必须初始化。使用指针也不能修改引用的指向。2.2将引用作为函数参数2.3
- CSS教程--动画
前段被迫创业
前端学习css3前端css
目录一.2D转换1.translate()平移操作2.rotate()旋转操作3.scale()放大缩小操作3.1.scaleX()3.2.scaleY()4.skew()倾斜操作二.3D变换1.rotateX()2.rotateY()3.rotateZ()三.CSS过渡1.transition属性2.transition-delay属性3.transition-timing-function属性
- Python精进系列: K-Means 聚类算法调用库函数和手动实现对比分析
进一步有进一步的欢喜
Python精进系列算法pythonkmeans
一、引言在机器学习领域,聚类分析是一种重要的无监督学习方法,用于将数据集中的样本划分为不同的组或簇,使得同一簇内的样本具有较高的相似性,而不同簇之间的样本具有较大的差异性。K-Means聚类算法是最常用的聚类算法之一,它以其简单性和高效性在数据挖掘、图像分割、模式识别等领域得到了广泛应用。本文将详细介绍K-Means聚类算法,并分别给出调用现成函数和不调用任何现成函数实现K-Means聚类的代码示
- 利用 OpenCV 库进行实时目标物体检测
欣然~
opencv人工智能计算机视觉
一、代码概述此代码利用OpenCV库实现了基于特征匹配的实时物体检测系统。通过摄像头捕获实时视频帧,将其与预先加载的参考图像进行特征匹配,从而识别出视频帧中是否存在与参考图像匹配的物体。二、环境依赖OpenCV:用于图像处理、特征提取和匹配等操作。NumPy:用于数值计算,OpenCV依赖于NumPy进行数组操作。可以使用以下命令安装所需库:bashpipinstallopencv-pythonn
- 深度学习处理时间序列(2)
yyc_audio
深度学习笔记深度学习人工智能
在数据中寻找周期性在多个时间尺度上的周期性,是时间序列数据非常重要且常见的属性。无论是天气、商场停车位使用率、网站流量、杂货店销售额,还是健身追踪器记录的步数,你都会看到每日周期性和年度周期性(人类生成的数据通常还有每周的周期性)。探索数据时,一定要注意寻找这些模式。(让人想到波,想到傅里叶变换)对于这个数据集,如果你想根据前几个月的数据来预测下个月的平均温度,那么问题很简单,因为数据具有可靠的年
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置