E. Sum of Remainders
题目链接:点这里
题意:
求n%1+n%2+n%3+...n%m; 答案对1e9+7取模
数据范围 1<n,m<1e13
题解:
我们来看下取模运算是怎么进行的: n%i = n-n/i*i
对原式子化解成 n*m - sum(n/i*i) (1<=i<=m)
然后我们假设n/i~n/j的值是相同的。我们求j的最大值。j=n/(n/j)。
然后就可以把sum(n/i*i)看成若干个等差数列。很容易就能得到答案。
时间复杂度sqrt(n)
代码:
#include<cstdio> #include<cstring> #include<iostream> #include<sstream> #include<algorithm> #include<vector> #include<bitset> #include<set> #include<queue> #include<stack> #include<map> #include<cstdlib> #include<cmath> #define PI 2*asin(1.0) #define LL long long #define pb push_back #define pa pair<int,int> #define clr(a,b) memset(a,b,sizeof(a)) #define lson lr<<1,l,mid #define rson lr<<1|1,mid+1,r #define bug(x) printf("%d++++++++++++++++++++%d\n",x,x) #define key_value ch[ch[root][1]][0] const LL MOD = 1000000000+7; const int N = 5e5+15; const int maxn = 1e6+1000; const int letter = 130; const int INF = 1e17; const double pi=acos(-1.0); const double eps=1e-8; using namespace std; inline int read() { int x=0,f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } LL n,m; LL md(LL x){ return x%MOD; } int main(){ /// n*m-sum(n/i*i) cin>>n>>m; /// sum = n%1+n%2+n%3...n%m,sum=sum%MOD; LL ans=0,vs=0; LL j; ans=md(md(n)*md(m)); for(LL i=1;i<=min(n,m);i++){ j=n/(n/i); ///%2 if(j>m) j=m; LL pc; if((i+j)&1) pc=md(md((j-i+1)/2)*md(md(n/i)*md(i+j))); else pc=md(md(j-i+1)*md(md(n/i)*md((i+j)/2))); vs=vs+pc; vs=md(vs); i=j; } ans=md(ans-vs); if(ans<0) ans+=MOD; cout << ans << endl;