typename struct CvHistogram { int type; CvArr* bins; float thresh[CV_MAX_DIM][2]; float** thresh2; CvMatND mat;//很多数据都在这个矩阵中,可以访问 }CvHistogram;直方图的创建、计算和访问,匹配:
//创建直方图 CvHistogram* cvCreateHist(...); CvHistogram* cvMakeHistHeaderForArray(..);//根据已知的数据创建直方图; void cvCalcHist(..);//从图像计算直方图,调用之前要用cvSplit()进行通道分割 void cvSetHistBinRanges(...);//设置直方图ranges范围 void cvReleaseHist(..);//释放直方图 //直方图的访问 void cvQueryHistValue_1D(...);//对应有_2D,_3D,_nD,访问直方图bins中的数据,也可以hist->bins来访问。 float* cvGetHistValue_1D(...);//同上。 //直方图操作 cvNormalizeHist(...);//直方图归一化 cvThreshHist(..);//直方图阈值(对bins值的阈值) cvCopyHist(..);//复制 double cvCompareHist(...);//直方图匹配,可以选择距离测量的方法
光线的变化能引起图像颜色值的漂移,尽管这些漂移没有改变颜色直方图的形状,但是这些漂移引起了颜色值位置的变化,从而导致匹配策略失效。
陆地移动距离是一种度量准则,它实际上市度量怎样将一个直方图转变为另一个直方图的形状,包括移动直方图的部分(或全部)到一个新的位置,可以在任何维的直方图上进行这种度量。
两个加权点集之间计算最小工作距离
float cvCalcEMD2( const CvArr* signature1, const CvArr* signature2, int distance_type, CvDistanceFunction distance_func=NULL, const CvArr* cost_matrix=NULL, CvArr* flow=NULL, float* lower_bound=NULL, void* userdata=NULL ); typedef float (*CvDistanceFunction)(const float* f1, const float* f2, void* userdata);例子,来自:http://blog.csdn.net/thystar/article/details/40934073
/* 用EMD度量两个分布的相似性 这里,用lena和lena直方图均衡化的结果度量。 */ #include "highgui.h" #include "cv.h" #include<iostream> using namespace std; void doEMD2(IplImage* img) { /*对输入的图像做直方图均衡化处理,生成img2*/ IplImage* pImageChannel[4] = {0, 0, 0, 0}; IplImage* img2 = cvCreateImage(cvGetSize(img), img->depth, img->nChannels); for(int i = 0; i < img->nChannels; i++) { pImageChannel[i] = cvCreateImage(cvGetSize(img), img->depth,1); } //信道分离 cvSplit(img, pImageChannel[0], pImageChannel[1], pImageChannel[2],pImageChannel[3]); for(int i = 0; i < img2->nChannels; i++) { //直方图均衡化 cvEqualizeHist(pImageChannel[i], pImageChannel[i]); } //信道组合 cvMerge(pImageChannel[0],pImageChannel[1], pImageChannel[2],pImageChannel[3], img2); //绘制直方图 int h_bins = 16, s_bins = 8; int hist_size[] = {h_bins, s_bins}; //H 分量的变化范围 float h_ranges[] = {0,180}; //S 分量的变化范围 float s_ranges[] = {0,255}; float* ranges[] = {h_ranges,s_ranges}; IplImage* hsv = cvCreateImage(cvGetSize(img), 8, 3); IplImage* hsv2 = cvCreateImage(cvGetSize(img2), 8, 3); IplImage* h_plane = cvCreateImage(cvGetSize(img), 8, 1); IplImage* s_plane = cvCreateImage(cvGetSize(img), 8, 1); IplImage* v_plane = cvCreateImage(cvGetSize(img), 8, 1); IplImage* planes[] = {h_plane, s_plane}; IplImage* h_plane2 = cvCreateImage(cvGetSize(img2), 8, 1); IplImage* s_plane2 = cvCreateImage(cvGetSize(img2), 8, 1); IplImage* v_plane2 = cvCreateImage(cvGetSize(img2), 8, 1); IplImage* planes2[] = {h_plane2, s_plane2}; // 将两幅图像转换到HSV颜色空间 cvCvtColor(img, hsv, CV_BGR2HSV); cvCvtPixToPlane(hsv, h_plane, s_plane, v_plane, 0); cvCvtColor(img2, hsv2, CV_BGR2HSV); cvCvtPixToPlane(hsv2, h_plane2, s_plane2, v_plane2, 0); // 创建直方图 CvHistogram* hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1); CvHistogram* hist2 = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1); // 根据H,S两个平面数据统计直方图 cvCalcHist(planes, hist, 0, 0); cvCalcHist(planes2, hist2, 0, 0); //获取直方图统计 ///float max_value; //float max_value2; //cvGetMinMaxHistValue(hist, 0, &max_value, 0,0); //cvGetMinMaxHistValue(hist2, 0, &max_value2, 0, 0); //设置直方图显示图像 int height = 240; int width = (h_bins * s_bins * 6); IplImage* hist_img = cvCreateImage(cvSize(width, height), 8, 3); IplImage* hist_img2 = cvCreateImage(cvSize(width, height), 8, 3); cvZero(hist_img); cvZero(hist_img2); //用来进行HSV到RGB颜色转换的临时图像 //IplImage* hsv_color = cvCreateImage(cvSize(1,1), 8, 3); //IplImage* rgb_color = cvCreateImage(cvSize(1,1), 8, 3); //int bin_w = width/(h_bins * s_bins); // CvMat* sig1, *sig2; int numrows = h_bins*s_bins; sig1 = cvCreateMat(numrows, 3, CV_32FC1); sig2 = cvCreateMat(numrows, 3, CV_32FC1); for(int h = 0; h < h_bins; h++) { for(int s = 0; s < s_bins; s++) { //int i = h * s_bins + s; // 获得直方图中的统计次数, 计算显示在图中的高度 float bin_val = cvQueryHistValue_2D(hist, h,s); cvSet2D(sig1, h*s_bins + s, 0, cvScalar(bin_val)); cvSet2D(sig1, h*s_bins + s, 1, cvScalar(h)); cvSet2D(sig1, h*s_bins + s, 2, cvScalar(s)); bin_val = cvQueryHistValue_2D(hist2,h,s); cvSet2D(sig2, h*s_bins + s, 0, cvScalar(bin_val)); cvSet2D(sig2, h*s_bins + s, 1, cvScalar(h)); cvSet2D(sig2, h*s_bins + s, 2, cvScalar(s)); } } float emd = cvCalcEMD2(sig1,sig2,CV_DIST_L2); cout<< emd<<endl; }
void cvCalcBackProjectPatch( IplImage** image, CvArr* dst, CvSize patch_size, CvHistogram* hist, int method, double factor );