POJ 2396 Budget 上下界网络流

这是一道比较基础的上下界网络流了

上下界网络流的算法完全是参考论文《一种简易的方法求解流量有上下界的网络 》 还有 《最大流在信息学竞赛中应用的一个模型 》

然后http://blog.csdn.net/water_glass/article/details/6823741说的也是比较详细

具体的解法不再多说了,网络流的算法一直是比较麻烦,代码量还大,我看了好久才明白算法是啥意思。

总体来说有上下界的网络流分两种问题,第一种是只求可行流,第二种呢就是给定源汇求最大流。

对于第一种问题,一般就是碰见有源汇的网络,然后给变成无源汇的。

第二种呢就按文中说的吧。


刚开始比较迷惑为啥加了一对源汇了,又加一对。  后来明白了,对本题而言,刚开始是一个有源汇的网络,

就是我们加的第一对的源汇,而我们要转化为一个无源汇的网络,就在汇到源加一条无穷容量的边,这样就满足了定义的要求,后来再加一对的源汇,才是论文中说的附加源汇

代码比较肥硕

输出答案的时候。刚开始觉得挺蛋疼,后来发现边都是按顺序加的,瞬间觉得世界又美好了

我的模板里,边里存的cap表示这条边还有多少流量可用,flow就是现在已经使用的流量 

 

#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <queue>
#include <map>
#include <set>
#define MAXN 555
#define MAXM 555555
#define INF 1000000007
using namespace std;
struct node
{
    int ver;    // vertex
    int cap;    // capacity
    int flow;   // current flow in this arc
    int next, rev;
}edge[MAXM];
int dist[MAXN], numbs[MAXN], src, des, n;
int head[MAXN], e;
void add(int x, int y, int c)
{       //e记录边的总数
    edge[e].ver = y;
    edge[e].cap = c;
    edge[e].flow = 0;
    edge[e].rev = e + 1;        //反向边在edge中的下标位置
    edge[e].next = head[x];   //记录以x为起点的上一条边在edge中的下标位置
    head[x] = e++;           //以x为起点的边的位置
    //反向边
    edge[e].ver = x;
    edge[e].cap = 0;  //反向边的初始可行流量为0
    edge[e].flow = 0;
    edge[e].rev = e - 1;
    edge[e].next = head[y];
    head[y] = e++;
}
void rev_BFS()
{
    int Q[MAXN], qhead = 0, qtail = 0;
    for(int i = 1; i <= n; ++i)
    {
        dist[i] = MAXN;
        numbs[i] = 0;
    }
    Q[qtail++] = des;
    dist[des] = 0;
    numbs[0] = 1;
    while(qhead != qtail)
    {
        int v = Q[qhead++];
        for(int i = head[v]; i != -1; i = edge[i].next)
        {
            if(edge[edge[i].rev].cap == 0 || dist[edge[i].ver] < MAXN)continue;
            dist[edge[i].ver] = dist[v] + 1;
            ++numbs[dist[edge[i].ver]];
            Q[qtail++] = edge[i].ver;
        }
    }
}
void init()
{
    e = 0;
    memset(head, -1, sizeof(head));
}
int maxflow()
{
    int u, totalflow = 0;
    int Curhead[MAXN], revpath[MAXN];
    for(int i = 1; i <= n; ++i)Curhead[i] = head[i];
    u = src;
    while(dist[src] < n)
    {
        if(u == des)     // find an augmenting path
        {
            int augflow = INF;
            for(int i = src; i != des; i = edge[Curhead[i]].ver)
                augflow = min(augflow, edge[Curhead[i]].cap);
            for(int i = src; i != des; i = edge[Curhead[i]].ver)
            {
                edge[Curhead[i]].cap -= augflow;
                edge[edge[Curhead[i]].rev].cap += augflow;
                edge[Curhead[i]].flow += augflow;
                edge[edge[Curhead[i]].rev].flow -= augflow;
            }
            totalflow += augflow;
            u = src;
        }
        int i;
        for(i = Curhead[u]; i != -1; i = edge[i].next)
            if(edge[i].cap > 0 && dist[u] == dist[edge[i].ver] + 1)break;
        if(i != -1)     // find an admissible arc, then Advance
        {
            Curhead[u] = i;
            revpath[edge[i].ver] = edge[i].rev;
            u = edge[i].ver;
        }
        else        // no admissible arc, then relabel this vertex
        {
            if(0 == (--numbs[dist[u]]))break;    // GAP cut, Important!
            Curhead[u] = head[u];
            int mindist = n;
            for(int j = head[u]; j != -1; j = edge[j].next)
                if(edge[j].cap > 0)mindist = min(mindist, dist[edge[j].ver]);
            dist[u] = mindist + 1;
            ++numbs[dist[u]];
            if(u != src)
                u = edge[revpath[u]].ver;    // Backtrack
        }
    }
    return totalflow;
}
int low[MAXN][MAXN], up[MAXN][MAXN];
int xj[MAXN];
int col, row, s, t;
bool build()
{
    for(int i = 1; i <= row; i++)
        for(int j = 1; j <= col; j++)
        {
            if(low[i][j] > up[i][j]) return false;
            else
            {
                xj[i] -= low[i][j];
                xj[j + row] += low[i][j];
                add(i, j + row, up[i][j] - low[i][j]);
            }
        }
    return true;
}
void solve()
{
    src = t + 1;
    des = t + 2;
    n = des;
    for(int i = 1; i <= t; i++)
        if(xj[i] > 0) add(src, i, xj[i]);
        else if(xj[i] < 0) add(i, des, -xj[i]);
    add(t, s, INF);
    rev_BFS();
    maxflow();
    for(int i = head[src]; i != -1; i = edge[i].next)
        if(edge[i].cap > 0)
        {
            printf("IMPOSSIBLE\n\n");
            return;
        }
    for(int i = 1; i <= row; i++)
        for(int j = 1; j <= col; j++)
        {
            printf("%d", edge[((i - 1) * col + j - 1) * 2].flow + low[i][j]);
            if(j < col) putchar(' ');
            else putchar('\n');
        }
    printf("\n");
}
int main()
{
    int T, u, v, w;
    char op[5];
    scanf("%d", &T);
    while(T--)
    {
        init();
        scanf("%d%d", &row, & col);
        memset(xj, 0, sizeof(xj));
        for(int i = 0; i < row + 5; i++)
            for(int j = 0; j < col + 5; j++)
                low[i][j] = 0, up[i][j] = INF;
        s = row + col + 1;
        t = row + col + 2;
        for(int i = 1; i <= row; i++)
        {
            scanf("%d", &u);
            xj[s] -= u;
            xj[i] += u;
        }
        for(int i = row + 1; i <= row + col; i++)
        {
            scanf("%d", &u);
            xj[t] += u;
            xj[i] -= u;
        }
        int q, lc, rc, lr, rr;
        scanf("%d", &q);
        while(q--)
        {
            scanf("%d%d%s%d", &u, &v, op, &w);
            lr = rr = u;
            lc = rc = v;
            if(u == 0) lr = 1, rr = row;
            if(v == 0) lc = 1, rc = col;
            for(int i = lr; i <= rr; i++)
                for(int j = lc; j <= rc; j++)
                {
                    if(op[0] == '=') low[i][j] = max(low[i][j], w), up[i][j] = min(up[i][j], w);
                    else if(op[0] == '<') up[i][j] = min(w - 1, up[i][j]);
                    else if(op[0] == '>') low[i][j] = max(low[i][j], w + 1);
                }
        }
        if(build()) solve();
        else printf("IMPOSSIBLE\n\n");
    }
    return 0;
}


你可能感兴趣的:(POJ 2396 Budget 上下界网络流)