POJ - 1258

Description

Farmer John has been elected mayor of his town! One of his campaign promises was to bring internet connectivity to all farms in the area. He needs your help, of course.
Farmer John ordered a high speed connection for his farm and is going to share his connectivity with the other farmers. To minimize cost, he wants to lay the minimum amount of optical fiber to connect his farm to all the other farms.
Given a list of how much fiber it takes to connect each pair of farms, you must find the minimum amount of fiber needed to connect them all together. Each farm must connect to some other farm such that a packet can flow from any one farm to any other farm.
The distance between any two farms will not exceed 100,000.

Input

The input includes several cases. For each case, the first line contains the number of farms, N (3 <= N <= 100). The following lines contain the N x N conectivity matrix, where each element shows the distance from on farm to another. Logically, they are N lines of N space-separated integers. Physically, they are limited in length to 80 characters, so some lines continue onto others. Of course, the diagonal will be 0, since the distance from farm i to itself is not interesting for this problem.

Output

For each case, output a single integer length that is the sum of the minimum length of fiber required to connect the entire set of farms.

Sample Input

4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0

Sample Output

28

题目大意:有这么几个农场,农场到农场间的距离不同,找出能够将他们全部连在一起并且距离最小的解。

是一个简单的最小生成树的题目,不是特别难。

#include <cstdio>
#include <cstring>

int main()
{
    int n;
    int a[105][105];
    bool vis[105];
    int y;
    int minn;

    while (scanf("%d", &n) != EOF)
    {
        if (n <= 0) break;

        for (int i = 0; i < n; ++i)
            for (int j = 0; j < n; ++j)
                scanf("%d", &a[i][j]);

        int ans = 0;
        memset(vis, false, sizeof(vis));
        vis[0] = true;
        for (int k = 1; k <= n-1; ++k)
        {
            minn = 100005;
            for (int i = 0; i < n; ++i)
            {
                for (int j = 0; j < n; ++j)
                {
                    if (i == j)
                        continue;
                    if (vis[i] == true && vis[j] == false)  ///以目前的为起点,找寻下一个农场
                    {
                        if (a[i][j] < minn)
                        {
                            y = j;
                            minn = a[i][j];
                        }
                    }
                }
            }
            vis[y] = true;
            ans += minn;
        }
        printf("%d\n", ans);
    }
    return 0;
}

一开始只按照路的数量来做的,但是没有考虑可能成为几个环的情况。

你可能感兴趣的:(ACM,poj)