HDU 5363 Key Set(2015 Multi-University Training Contest 6)

Key Set

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1384    Accepted Submission(s): 761


Problem Description
soda has a set  S  with  n  integers  {1,2,,n} . A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of  S  are key set.
 

Input
There are multiple test cases. The first line of input contains an integer  T   (1T105) , indicating the number of test cases. For each test case:

The first line contains an integer  n   (1n109) , the number of integers in the set.
 

Output
For each test case, output the number of key sets modulo 1000000007.
 

Sample Input
   
   
   
   
4 1 2 3 4
 

Sample Output
   
   
   
   
0 1 3 7
 

Author
zimpha@zju
 

Source
2015 Multi-University Training Contest 6

 题意:给你一个具有n个元素的集合S{1,2,…,n},问集合S的非空子集中元素和为偶数的非空子集有多少个。

解:答案是2^n-1,用快速幂,不然要超时

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define LL __int64
const LL mod=1e9+7;
LL quick_mod(LL x,LL n)//快速幂
{
    LL ans=1;
    x=x%mod;
    while(n)
    {
        if(n&1)
            ans=(ans*x)%mod;
        n>>=1;
        x=(x*x)%mod;
    }
    return ans;

}
int main()
{
    LL t;
    scanf("%I64d",&t);
    while(t--)
    {
        LL n;
        scanf("%I64d",&n);
        printf("%I64d\n",quick_mod(2,n-1)-1);
    }
    return 0;
}

你可能感兴趣的:(HDU 5363 Key Set(2015 Multi-University Training Contest 6))