bzoj 1047 理想的正方形

利用单调队列维护以i,j为右下角的正方形的两个极值。
把w大成h了。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>

#define md
#define ll long long
#define inf (int) 1e9
#define eps 1e-8
#define N 1010
using namespace std;
int a[N][N],qmx[N][N],qmn[N][N];
struct yts { int dt,pos;} q1[N],q2[N];
int main()
{
int A,B,n;
scanf("%d%d%d",&A,&B,&n);
for (int i=1;i<=A;i++)
for (int j=1;j<=B;j++)
scanf("%d",&a[i][j]);
for (int j=1;j<=B;j++)
{
int h=1,w=0;
for (int i=1;i<=A;i++)
{
while (h<=w&&q1[h].pos<=i-n) h++;
while (h<=w&&q1[w].dt<=a[i][j]) w--;
q1[++w].pos=i; q1[w].dt=a[i][j];
qmx[i][j]=q1[h].dt;
}
h=1,w=0;
for (int i=1;i<=A;i++)
{
while (h<=w&&q2[h].pos<=i-n) h++;
while (h<=w&&q2[w].dt>=a[i][j]) w--;
q2[++w].pos=i; q2[w].dt=a[i][j];
qmn[i][j]=q2[h].dt;
}
}
int ans=inf;
for (int i=n;i<=A;i++)
{
int h1=1,w1=0,h2=1,w2=0;
for (int j=1;j<=B;j++)
{
while (h1<=w1&&q1[h1].pos<=j-n) h1++;
while (h1<=w1&&q1[w1].dt<=qmx[i][j]) w1--;
q1[++w1].pos=j; q1[w1].dt=qmx[i][j];
while (h2<=w2&&q2[h2].pos<=j-n) h2++;
while (h2<=w2&&q2[w2].dt>=qmn[i][j]) w2--;
q2[++w2].pos=j; q2[w2].dt=qmn[i][j];
if (j>=n) ans=min(ans,q1[h1].dt-q2[h2].dt);
}
}
printf("%d\n",ans);
return 0;
}


你可能感兴趣的:(bzoj 1047 理想的正方形)