传送门:【ACDream】1355 Domino in Casino
题目分析:费用流水题(前提是能看出来)。将矩阵黑白染色。黑色结点和源点建边,容量1,费用0。白色结点和汇点建边,容量1,费用0。黑色结点向相邻的白色结点建边,容量1,费用为两结点内权值的乘积的相反数。再建立超级源汇,超级源点向源点建边,容量k,费用0。汇点向超级汇点建边,容量k,费用0。最后跑一遍最小费用最大流即可。费用的相反数即答案。
就是二分图上的匹配问题,限制就是至多只能有K对匹配,所以用费用流求解。
代码如下:
#include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std ; #define rep( i , a , b ) for ( int i = a ; i < b ; ++ i ) #define rev( i , a , b ) for ( int i = a ; i >= b ; -- i ) #define For( i , a , b ) for ( int i = a ; i <= b ; ++ i ) #define clr( a , x ) memset ( a , x , sizeof a ) #define cpy( a , x ) memcpy ( a , x , sizeof a ) const int MAXN = 2005 ; const int MAXQ = 1000005 ; const int MAXE = 1000005 ; const int INF = 0x3f3f3f3f ; struct Edge { int v , c , w , n ; Edge () {} Edge ( int v , int c , int w , int n ) : v ( v ) , c ( c ) , w ( w ) , n ( n ) {} } E[MAXE] ; int H[MAXN] , cntE ; int d[MAXN] , cur[MAXN] , cap[MAXN] ; int vis[MAXN] , Time ; int Q[MAXQ] , head , tail ; int ss , tt ; int s , t ; int flow ; int cost ; int n , m , k ; int a[17][105] ; void clear () { cntE = 0 ; clr ( H , -1 ) ; } void addedge ( int u , int v , int c , int w ) { E[cntE] = Edge ( v , c , +w , H[u] ) ; H[u] = cntE ++ ; E[cntE] = Edge ( u , 0 , -w , H[v] ) ; H[v] = cntE ++ ; } int spfa () { head = tail = 0 ; clr ( d , INF ) ; ++ Time ; d[ss] = 0 ; cap[ss] = INF ; cur[ss] = -1 ; Q[tail ++] = ss ; while ( head != tail ) { int u = Q[head ++] ; vis[u] = Time - 1 ; for ( int i = H[u] ; ~i ; i = E[i].n ) { int v = E[i].v , c = E[i].c , w = E[i].w ; if ( c && d[v] > d[u] + w ) { d[v] = d[u] + w ; cap[v] = min ( cap[u] , c ) ; cur[v] = i ; if ( vis[v] != Time ) { vis[v] = Time ; Q[tail ++] = v ; } } } } if ( d[tt] == INF ) return 0 ; cost += d[tt] * cap[tt] ; flow += cap[tt] ; for ( int i = cur[tt] ; ~i ; i = cur[E[i ^ 1].v] ) { E[i].c -= cap[tt] ; E[i ^ 1].c += cap[tt] ; } return 1 ; } int mcmf () { flow = cost = 0 ; while ( spfa () ) ; return cost ; } void solve () { clear () ; s = n * m ; t = s + 1 ; ss = t + 1 ; tt = ss + 1 ; addedge ( ss , s , k , 0 ) ; addedge ( t , tt , k , 0 ) ; rep ( i , 0 , n ) rep ( j , 0 , m ) scanf ( "%d" , &a[i][j] ) ; rep ( i , 0 , n ) rep ( j , 0 , m ) { int ij = i * m + j ; if ( ( i + j ) & 1 ) { addedge ( s , ij , 1 , 0 ) ; if ( i < n - 1 ) addedge ( ij , ij + m , 1 , - a[i][j] * a[i + 1][j] ) ; if ( j < m - 1 ) addedge ( ij , ij + 1 , 1 , - a[i][j] * a[i][j + 1] ) ; if ( i ) addedge ( ij , ij - m , 1 , - a[i][j] * a[i - 1][j] ) ; if ( j ) addedge ( ij , ij - 1 , 1 , - a[i][j] * a[i][j - 1] ) ; } else addedge ( ij , t , 1 , 0 ) ; } printf ( "%d\n" , -mcmf () ) ; } int main () { clr ( vis , 0 ) ; Time = 0 ; while ( ~scanf ( "%d%d%d" , &n , &m , &k ) ) solve () ; return 0 ; }