Linux内核的Softirq机制(三)

Linux内核的Softirq机制(三)
6.3 Bottom Half机制
Bottom Half机制在新的softirq机制中被保留下来,并作为softirq框架的一部分。其实现也似乎更为复杂些,因为它是通过tasklet机制这个中介桥梁来纳入softirq框架中的。实际上,软中断向量HI_SOFTIRQ是内核专用于执行BH函数的。

6.3.1 数据结构的定义
原有的32个BH函数指针被保留,定义在kernel/softirq.c文件中:
static void (*bh_base[32])(void);

但是,每个BH函数都对应有一个tasklet,并由tasklet的可执行函数func来负责调用相应的bh函数(func函数的参数指定调用哪一个BH函数)。与32个BH函数指针相对应的tasklet的定义如下所示(kernel/softirq.c):
struct tasklet_struct bh_task_vec[32];

上述tasklet数组使系统全局的,它对所有的CPU均可见。由于在某一个时刻只能有一个CPU在执行BH函数,因此定义一个全局的自旋锁来保护BH函数,如下所示(kernel/softirq.c):
spinlock_t global_bh_lock = SPIN_LOCK_UNLOCKED;

6.3.2 初始化
在softirq机制的初始化函数softirq_init()中将bh_task_vec[32]数组中的每一个tasklet中的func函数指针都设置为指向同一个函数bh_action,而data成员(也即func函数的调用参数)则被设置成该tasklet在数组中的索引值,如下所示:
void __init softirq_init()
{
……
for (i=0; i<32; i++)
tasklet_init(bh_task_vec+i, bh_action, i);
……
}
因此,bh_action()函数将负责相应地调用参数所指定的bh函数。该函数是连接tasklet机制与Bottom Half机制的关键所在。

6.2.3 bh_action()函数
该函数的源码如下(kernel/softirq.c):
static void bh_action(unsigned long nr)
{
int cpu = smp_processor_id();

if (!spin_trylock(&global_bh_lock))
goto resched;

if (!hardirq_trylock(cpu))
goto resched_unlock;

if (bh_base[nr])
bh_base[nr]();

hardirq_endlock(cpu);
spin_unlock(&global_bh_lock);
return;

resched_unlock:
spin_unlock(&global_bh_lock);
resched:
mark_bh(nr);
}
对该函数的注释如下:
①首先,调用spin_trylock()函数试图对自旋锁global_bh_lock进行加锁,同时该函数还将返回自旋锁 global_bh_lock的原有值的非。因此,如果global_bh_lock已被某个CPU上锁而为非0值(那个CPU肯定在执行某个BH函数),那么spin_trylock()将返回为0表示上锁失败,在这种情况下,当前CPU是不能执行BH函数的,因为另一个CPU正在执行BH函数,于是执行goto语句跳转到resched程序段,以便在当前CPU上再一次调度该BH函数。
②调用hardirq_trylock()函数锁定当前CPU,确保当前CPU不是处于硬件中断请求服务中,如果锁定失败,跳转到resched_unlock程序段,以便先对global_bh_lock解锁,在重新调度一次该BH函数。
③此时,我们已经可以放心地在当前CPU上执行BH函数了。当然,对应的BH函数指针bh_base[nr]必须有效才行。
④从BH函数返回后,先调用hardirq_endlock()函数(实际上它什么也不干,调用它只是为了保此加、解锁的成对关系),然后解除自旋锁global_bh_lock,最后函数就可以返回了。
⑤resched_unlock程序段:先解除自旋锁global_bh_lock,然后执行reched程序段。
⑥resched程序段:当某个CPU正在执行BH函数时,当前CPU就不能通过bh_action()函数来调用执行任何BH函数,所以就通过调用mark_bh()函数在当前CPU上再重新调度一次,以便将这个BH函数留待下次软中断服务时执行。

6.3.4 Bottom Half的原有接口函数
(1)init_bh()函数
该函数用来在bh_base[]数组登记一个指定的bh函数,如下所示(kernel/softirq.c):
void init_bh(int nr, void (*routine)(void))
{
bh_base[nr] = routine;
mb();
}

(2)remove_bh()函数
该函数用来在bh_base[]数组中注销指定的函数指针,同时将相对应的tasklet杀掉。如下所示(kernel/softirq.c):
void remove_bh(int nr)
{
tasklet_kill(bh_task_vec+nr);
bh_base[nr] = NULL;
}

(3)mark_bh()函数
该函数用来向当前CPU标记由一个BH函数等待去执行。它实际上通过调用tasklet_hi_schedule()函数将相应的tasklet 加入到当前CPU的tasklet队列tasklet_hi_vec[cpu]中,然后触发软中断请求HI_SOFTIRQ,如下所示(include/linux/interrupt.h):
static inline void mark_bh(int nr)
{
tasklet_hi_schedule(bh_task_vec+nr);
}

6.3.5 预定义的BH函数
在32个BH函数指针中,大多数已经固定用于一些常见的外设,比如:第0个BH函数就固定地用于时钟中断。Linux在头文件include/linux/interrupt.h中定义了这些已经被使用的BH函数所引,如下所示:
enum {
TIMER_BH = 0,
TQUEUE_BH,
DIGI_BH,
SERIAL_BH,
RISCOM8_BH,
SPECIALIX_BH,
AURORA_BH,
ESP_BH,
SCSI_BH,
IMMEDIATE_BH,
CYCLADES_BH,
CM206_BH,
JS_BH,
MACSERIAL_BH,
ISICOM_BH
};

你可能感兴趣的:(数据结构,框架,timer,struct,action,linux内核)