题目链接:hdu 4775 Infinite Go
题目大意:两个人下围棋,总共走了n步,黑棋和白棋交替走,如果一片棋的上下左右被封死,那么该片棋子就会被吃掉,问说最后黑白棋各剩多少个。
解题思路:比较恶心的模拟题,相邻相同色的棋子要用并查集连接,并且要记录每片棋子还剩的空格数,如果空格数为0的话说明该片棋子被其他颜色围住,则要剔除掉,不且将相邻的位置不同色的棋空格数加1。主要是细节上的问题。
样例
8
7
5 5
4 5
3 5
3 4
4 4
3 3
4 6
18
1 3
1 4
2 2
1 5
2 4
2 3
3 1
3 2
3 5
3 4
4 2
4 3
4 4
1 6
5 3
3 3
1 10
3 3
12
1 2
1 1
2 1
2 2
1 3
3 1
2 3
1 4
3 2
3 3
4 2
2 4
4
1 1
1 2
2 2
2 1
4
2000000000 2000000000
2000000000 1999999999
1999999999 1999999999
1999999999 2000000000
8
1 2
4 1
2 1
4 2
2 3
4 3
3 2
2 2
17
1 3
1 4
2 2
1 5
2 4
2 3
3 1
3 2
3 5
3 4
4 2
4 3
4 4
1 6
5 3
30 30
3 3
17
1 3
1 4
2 2
1 5
2 4
2 3
3 1
3 2
3 5
3 4
4 2
3 3
4 4
1 6
5 3
4 3
100 100
答案
4 2
9 4
6 4
1 2
2 2
4 3
9 4
9 3
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
using namespace std;
const int maxn = 1e4;
const int INF = 2*1e9+10;
const int dir[4][2] = { {0, 1}, {0, -1}, {1, 0}, {-1, 0} };
typedef pair<int, int> pii;
int N, Nw, Nb, X[maxn+5], Y[maxn+5], f[maxn+5], c[maxn+5];
map<pii, int> R;
void init () {
scanf("%d", &N);
Nw = N / 2;
Nb = N - Nw;
R.clear();
for (int i = 0; i < N; i++) {
f[i] = i;
c[i] = 0;
}
}
inline int bit (int x) {
return x&1;
}
int getfar (int x) {
return f[x] == x ? x : f[x] = getfar(f[x]);
}
inline bool isEmpty (int x, int y) {
if (x <= 0 || y <= 0 || x >= INF || y >= INF)
return false;
if (R.count(make_pair(x, y)))
return false;
return true;
}
inline int count_empty (pii u) {
int cnt = 0;
for (int i = 0; i < 4; i++) {
int x = u.first + dir[i][0];
int y = u.second + dir[i][1];
if (isEmpty(x, y))
cnt++;
}
return cnt;
}
inline void link_board (int x, int y) {
int fx = getfar(x);
int fy = getfar(y);
f[fy] = fx;
c[fx] += c[fy];
/**/
c[fx]--;
}
int del_board (int col, int x, int y) {
int cnt = 1;
pii u = make_pair(x, y);
queue<pii> que;
que.push(u);
f[R[u]] = R[u];
R.erase(u);
while (!que.empty()) {
u = que.front();
que.pop();
for (int i = 0; i < 4; i++) {
int p = u.first + dir[i][0];
int q = u.second + dir[i][1];
if (p <= 0 || p >= INF || q <= 0 || q >= INF)
continue;
pii v = make_pair(p, q);
if (!R.count(v))
continue;
int set = R[v];
if (bit(set) != col) {
int k = getfar(set);
c[k]++;
continue;
}
f[R[v]] = R[v];
R.erase(v);
cnt++;
que.push(v);
}
}
return cnt;
}
void del_empty (int k) {
int fk = getfar(k);
c[fk]--;
if (c[fk] == 0) {
int set = bit(fk);
int cnt = del_board(set, X[fk], Y[fk]);
if (set)
Nw -= cnt;
else
Nb -= cnt;
}
}
void solve () {
for (int i = 0; i < N; i++) {
scanf("%d%d", &X[i], &Y[i]);
pii v = make_pair(X[i], Y[i]);
c[i] = count_empty(v);
R[v] = i;
for (int j = 0; j < 4; j++) {
int p = X[i] + dir[j][0];
int q = Y[i] + dir[j][1];
if (p <= 0 || q <= 0 || p >= INF || q >= INF)
continue;
pii u = make_pair(p, q);
if (!R.count(u))
continue;
int k = R[u];
if (bit(i) == bit(k))
link_board(i, k);
else
del_empty(k);
}
int fi = getfar(i);
if (c[fi] == 0) {
int cnt = del_board(bit(fi), X[fi], Y[fi]);
if (bit(fi))
Nw -= cnt;
else
Nb -= cnt;
}
}
printf("%d %d\n", Nb, Nw);
}
int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
init();
solve();
}
return 0;
}