- 【算法实践】回溯算法——子集求和问题
灿烂的贝壳
算法实践算法回溯面试
回溯算法——子集求和问题给定一个非负整数集合S,找出所有元素和等于给定值SUM的子集。例如:输入:set[]={1,2,1},sum=3输出:[1,2],[2,1]解释:子集[1,2],[2,1]的元素和都等于3.输入:set[]={3,34,4,12,5,2},sum=30输出:[]解释:没有任何子集的元素和等于30.分析子集和问题可视为0-1背包问题的特例。对于每个元素,存在两种处理方式:纳入
- 代码随想录动态规划05
Naive_7
动态规划算法
74.一和零视频讲解:动态规划之背包问题,装满这个背包最多用多少个物品?|LeetCode:474.一和零_哔哩哔哩_bilibili代码随想录给你一个二进制字符串数组strs和两个整数m和n。请你找出并返回strs的最大子集的大小,该子集中最多有m个0和n个1。如果x的所有元素也是y的元素,集合x是集合y的子集。示例1:输入:strs=["10","0001","111001","1","0"]
- Python贪心算法详解:如何解决最优组合问题
追逐程序梦想者
python贪心算法开发语言点云处理
Python贪心算法详解:如何解决最优组合问题贪心算法是一种求解最优化问题的经典算法,其基本思想是在每一个阶段选择最优的策略,从而得到全局最优解。在实际应用中,贪心算法适用于一些特殊类型的问题,如背包问题、最小生成树问题、任务调度问题等。Python作为一门高级编程语言,具有简洁、易用、高效等特点,在实现贪心算法时也非常方便。下面将通过具体例子来讲解如何使用Python来实现贪心算法,以解决最优组
- 0-1背包问题,使用动态规划的三种方法(二维数组,两个一维数组,一个一维数组)python实现
路漫漫`
leetcodePython算法动态规划python
0-1背包问题感谢这些朋友们的文章,给了我很大启发:https://blog.csdn.net/songyunli1111/article/details/94778914https://blog.csdn.net/na_beginning/article/details/62884939https://blog.csdn.net/qq_39445165/article/details/84334
- Day42代码随想录动态规划part04:01背包问题的二维数组解法、01背包问题的一维数组解法、416. 分割等和子集
Estrellazhu
动态规划算法pythonleetcode
Day42动态规划part03-01背包问题01背包问题的二维数组解法01背包问题定义:有n件物品和一个最多能背重量为w的背包。第i件物品的重量是weight[i],得到的价值是value[i]。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。暴力解法:回溯法,枚举所有情况,每个物品是取与不取两个状态二维数组方法dp数组的含义:二维dp[i][j]数组:[0,i]之间的物品任取,放入
- 0 - 1 背包问题介绍与 C# 代码实现
CoreFMEA软件
技术算法c#开发语言背包问题算法
0-1背包问题介绍0-1背包问题是一个经典的组合优化问题,属于NP完全问题。问题描述如下:给定一组物品,每个物品有对应的重量w[i]和价值v[i],以及一个容量为C的背包。要求在不超过背包容量的前提下,选择一些物品放入背包,使得背包中物品的总价值最大。这里的“0-1”表示对于每个物品,只能选择放入背包(1)或者不放入背包(0),不能只放入部分物品。解决思路-动态规划虽然贪心算法在某些情况下可以用于
- 算法之01背包问题和完全背包问题
旧巷小新
编程算法
文章目录1.相关解释2.01背包问题2.1空间未优化前2.2空间优化后2.301背包求方案数2.3.1空间未优化2.3.2空间已优化2.401背包问题求路径2.4.1构造出来的路径字典序最大2.4.2构造出来的路径字典序最小3.完全背包问题3.1完全背包问题未优化空间3.1未优化时间复杂度3.1.2优化时间复杂度3.2完全背包问题优化空间3.3恰好装满的方案数4.01背包问题相关应用5.完全背包问
- 蓝桥杯C++基础算法-完全背包(优化为一维)
sin2580
C++蓝桥杯c++算法
这段代码实现了一个完全背包问题的动态规划解法,并且使用了滚动数组来优化空间复杂度。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积v[i]和价值w[i],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与0-1背包问题不同的是,完全背包问题中每个物品可以无限次选择。2.动态规划的概念动态规划是一种常用的算法技巧,用于解决具有重叠子问题和最优子结
- 蓝桥杯C++基础算法-多重背包
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法。多重背包问题与完全背包问题类似,但每个物品有其数量限制。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积v[i]、价值w[i]和数量s[i],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.动态规划的概念动态规划是一种常用的算法技巧,
- 蓝桥杯C++基础算法-分组背包
sin2580
C++蓝桥杯c++算法
这段代码实现了一个分组背包问题的动态规划解法。与之前的多重背包问题不同,这里的每个物品有多个不同的体积和价值组合,而不是单一的体积和价值。以下是代码的详细思路解析:1.问题背景给定n个物品组,每个物品组有s[i]个不同的物品,每个物品有其体积v[i][j]和价值w[i][j],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。2.动态规划的概念动态规划是一种常用的算
- 蓝桥杯C++基础算法-多重背包(优化)
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法,并且使用了二进制拆分(或称二进制优化)来优化物品的数量处理。这种方法可以显著减少状态转移的次数,提高算法的效率。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积a、价值b和数量s,以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.二进制
- 字节跳动算法高频题:动态规划最优模板
知识产权13937636601
计算机算法动态规划
本文系统梳理字节跳动近三年算法面试中的动态规划(DP)高频题型,提炼出适用于80%场景的通用解题模板。通过背包问题、字符串处理、状态压缩等六大核心模块解析,结合跳槽、股票交易、编辑距离等15道真题案例,揭示动态规划的状态转移方程构建规律与维度优化技巧,助您在面试中实现时间复杂度与空间复杂度的双重最优解。第一章动态规划基础框架1.1动态规划三大特征特征判定标准真题案例重叠子问题递归树中存在重复计算节
- 动态规划-01背包
ん贤
算法动态规划算法
兜兜转转了半天,发现还是Carl写的好。看过动态规划-基础的读者,大概都清楚。动态规划是将大问题,分解成子问题。并将子问题的解储存下来,避免重复计算。而背包问题,就是动态规划延申出来的一个大类。而01背包,就隶属于背包问题。那什么又是01背包呢?01背包有n件物品,与一次最多能背w重量的背包。第i件物品,重量为weight[i],得到的价值为value[i]。每件物品只能用一次,求解,将那些物品装
- 蓝桥杯备赛计划
laitywgx
蓝桥杯职场和发展
1-2小时的蓝桥杯PythonB组冲刺日程表(持续1个月,聚焦高频考点):第一周:核心算法突破Day1(周一)学习重点:动态规划(01背包问题)学习资源:AcWing《蓝桥杯辅导课》第8讲(背包问题模板)代码模板速记:#一维01背包模板n,V=map(int,input().split())dp=[0]*(V+1)for_inrange(n):w,v=map(int,input().split()
- 蓝桥杯动态规划实战:从数字三角形到砝码称重
藍海琴泉
蓝桥杯动态规划职场和发展
适合人群:蓝桥杯备考生|算法竞赛入门者|DP学习实践者目录一、我的动态规划入门之路1.数字三角形:经典DP首战告捷2.砝码称重:背包问题的变形二、蓝桥杯高频算法考点三、蓝桥杯DP专项训练题四、备考建议一、我的动态规划入门之路1.数字三角形:经典DP首战告捷题目描述:从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,你的任务就是找到最大的和(路径上的每一步只可
- 动态规划算法求解背包问题的全面剖析
15号外媒
算法
摘要本文深入剖析动态规划算法在求解背包问题中的应用,详细阐述动态规划算法的基本原理、核心要素与解题步骤。通过对0-1背包问题和完全背包问题的具体分析,展示动态规划算法在解决背包问题上的高效性与独特优势。同时,结合实际案例进行算法实现与结果分析,并探讨算法的优化策略与拓展应用,旨在帮助读者全面掌握动态规划算法求解背包问题的方法与技巧。一、引言背包问题作为组合优化领域的经典问题,在资源分配、投资决策、
- CSP-J备考冲刺必刷题(C++) | AcWing 11 背包问题求方案数
热爱编程的通信人
c++算法开发语言
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:算法竞赛备考冲刺必刷题(C++)|汇总【题目来源】AcWing:11.背包问题求方案数-AcWi
- 算法分析——动态规划
飞跑的鱼
算法
ProblemP08.[算法课动态规划]背包问题一个背包有一定的承重c,有N件物品。设数组下标从11开始。每件物品都有自己的价值,记录在数组V中,也都有自己的重量,记录在数组W中,每件物品只能选择要装入还是不装入背包,要求在不超过背包承重的前提下,选出的物品总价值最大。输出能装入背包的物品的最大总价值。输入输入一行两个整数物品数量N(1≤N≤500)承重c(1≤c≤500)。接下来输入一行N个整数
- 代码随想录算法训练营第三十五天(20250303) |01背包问题 二维,01背包问题 一维,416. 分割等和子集 -[补卡20250316]
ZXZ_13
算法
01背包问题二维链接遍历物品没有大小顺序要求重点是模拟,推导出递推公式#include#includeintmain(){intm,n;std::cin>>m>>n;std::vectorweight(m,0),value(m,0);for(inti{0};i>weight[i];}for(inti{0};i>value[i];}std::vector>dp(m,std::vector(n+1,0
- 基础算法--背包问题
不会搬砖的淡水鱼
基础算法算法java动态规划贪心算法
背包问题概念完全背包(无限背包)0-1背包概念背包问题是一个经典的组合优化问题,其目标是在给定的一组物品中选择一些物品放入背包中,使得物品的总价值最大化,同时要求背包的总重量不超过背包的容量限制。背包问题有两种常见的变体:完全背包和0-1背包。鉴于完全背包计算过程相对0-1背包简单,这里先讲完全背包。完全背包(无限背包)在完全背包问题中,每个物品可以选择放入背包中的次数是无限的,即可以重复选择。每
- dp背包问题
|CXHAO|
c++
有NN件物品和一个容量是VV的背包。每件物品只能使用一次。第ii件物品的体积是vivi,价值是wiwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。接下来有NN行,每行两个整数vi,wivi,wi,用空格隔开,分别表示第ii件物品的体积和价值。输出格式输出一个整数,表示最大价值
- 贪心算法在背包问题上的运用(Python)
MATLAB卡尔曼
智能算法的MATLAB实现贪心算法python算法
背包问题有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?这就是典型的背包问题(又称为0-1背包问题),也是具体的、没有经过任何延伸的背包问题模型。背包问题的传统求解方法较为复杂,现定义有一个可以载重为8kg的背包,另外还有4个物品,物品的价值和质量数据如下表,不考虑背包的容量。4个物品的总质量大于8kg,所以要想在有限载重的背包携带更多质量的物品,
- 代码随想录 Day 42 | 【第九章 动态规划 part 05】完全背包、518. 零钱兑换 II、377. 组合总和 Ⅳ、70. 爬楼梯 (进阶)
Accept17
动态规划算法
一、完全背包完全背包视频讲解:带你学透完全背包问题!和01背包有什么差别?遍历顺序上有什么讲究?_哔哩哔哩_bilibilihttps://programmercarl.com/%E8%83%8C%E5%8C%85%E9%97%AE%E9%A2%98%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85.ht
- 面试基础---面试刷题推荐 动态规划算法:背包问题与最长公共子序列
WeiLai1112
leetcode刷题算法面试动态规划java分布式
动态规划算法:背包问题与最长公共子序列引言:动态规划的核心思想动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法思想,通过将问题分解为子问题,并保存子问题的解,避免重复计算,从而提高效率。本文将详细讲解动态规划在背包问题和最长公共子序列中的应用,并提供易于记忆的代码模板。一、背包问题1.1问题描述给定n个物品,每个物品有一个重量w[i]和一个价值v[i]。现在有一个容量
- 笔记:代码随想录算法训练营第35天: 01背包问题 二维、 01背包问题 一维 、LeetCode416. 分割等和子集
jingjingjing1111
算法leetcode数据结构动态规划笔记
学习资料:代码随想录这一块儿学得挺痛苦注:文中含大模型生成内容动态规划:01背包理论基础卡码网第46题思路:五部曲定义:dp[i][j]为第i个物品背包容量为j,能装下的最大价值递推公式:dp[i][j]的值等于dp[i-1][j]的值和dp[i-1][j-weight[i]]+value相比的最大值,后者为看放下当前物品+减去当前物品的容量能放下什么价值,当然,要是放不下当前物品,就算了,保持原
- 回溯法-子集树递归树-装载问题
王安安的记录
算法回溯法c++算法
回溯法深度优先策略(回忆深度优先遍历二叉树思路)解题步骤:1)针对所给问题,定义问题的解空间;例如,n个物品的0-1背包问题所对应的解空间树是一棵子集树。2)确定易于搜索的解空间结构;3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数(****约束函数除去不满足约束的子树,限界函数减去得不到最优解的子树**)**避免无效搜索##子集树和递归树扩展结点:一个正在产生儿子的结点称为扩展结点。活结点
- 01背包问题简介
天狼星——白羽
python
01背包问题是动态规划算法中非常经典的一个问题,广泛应用于优化选择场景。它描述的是:给定一组物品(每个物品有重量和价值),以及一个最大承重能力的背包,在不超过背包容积的前提下,如何挑选这些物品使得装入背包中的总价值最高。基本要素n件物品每一件都有两个属性:weight[i]表示第i物品的重量;value[i]表示该物品的价值。背包的最大承载量为W;目标是在满足重量限制的情况下获得最大的总价值Vma
- Leetcode 刷题笔记1 动态规划part04
平乐君
leetcode笔记动态规划
leetcode最后一块石头的重量||问题转化,把石头问题转化为背包问题,在target容量范围内所能装的最大石头重量classSolution:deflastStoneWeightII(self,stones:List[int])->int:total=sum(stones)target=total//2dp=[0]*(target+1)forstoneinstones:forjinrange(
- 算法分析-贪心算法
old-handsome
算法贪心算法算法
文章目录前言一、定义二、特点三、使用场景适用场景:何时使用部分背包问题活动安排问题最优装载问题最小生成树Prim算法:按点检索,适用于稠密图Kruskal算法:并查集+最小生成树Dijkstra算法:不能存在负权边,松弛操作总结前言本博客仅做学习笔记,如有侵权,联系后即刻更改科普:贪心算法一、定义贪心算法是指在对问题进行求解时,在每一步选择中都采取最好或者最优(最有利)的选择,从而希望最终结果是最
- 蓝桥杯算法基础(36)动态规划dp经典问题详解
湖前一人对影成双
算法蓝桥杯动态规划
动态规划-动态规划方法方法代表了这一类问题(最优子结构or子问题最优性)的有一半解法,是设计方法或者策略,不是具体算法-本质是递推,核心是找到状态转移的方式,写出dp方程-形式:记忆性递归递推01背包问题有n个重量和价值分别为wi,vi的物品,从这些物品中挑选出总重量不超过n的物品,求所有挑选方案中的值总和的最大值1=w[i]){intv1=v[i]+dfs(i+1,ww-w[i]);//选择当前
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s