228 Summary Ranges
For example, given [0,1,2,4,5,7], return [“0->2”,”4->5”,”7”].
class Solution {
//此处将头尾格式化为字符串
string format(int begin, int end)
{
char buffer[32];
if (end == begin)
{
sprintf(buffer, "%d", begin);
}else{
sprintf(buffer, "%d->%d", begin, end);
}
return string(buffer);
}
vector<string> summaryRanges(vector<int>& nums) {
vector<string> result;
if (nums.size()<1)
return result;
int begin, end;
begin = nums[0];
end = nums[0];
for(int i=1; i<nums.size(); i++)
{
if(nums[i] == end || nums[i] == end+1)
end = nums[i];
else
{
result.push_back(format(begin, end));
begin = nums[i];
end = nums[i];
}
}
//别忘了处理最后一个元素,同时也处理了单个元素的情况
result.push_back(format(begin, end));
return result;
}
};
62 Unique Paths
动态规划,从左上到右下;
此处注意 vector二维向量用法,等价于
int path[101][101];
for(int i = 0; i < 101; i ++) { for(int j = 0; j < 101; j ++) { path[i][j] = 1; } }
此外,每次只需要用到上一行当前列,以及前一列当前行的信息,也可以只要用一个一维数组存上一行的信息,即res[i]+=res[i-1]
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> path(m, vector<int>(n, 1));
for(int i = 1; i < m; i ++)
{
for(int j = 1; j < n; j ++)
{
path[i][j] = path[i-1][j] + path[i][j-1];
}
}
return path[m-1][n-1];
}
};
63.Unique Paths II
依然是动态规划,但由于障碍物,使得机器人不是每次都有两个方向的选择。所以要添加初始化过程,以及修正动态规划过程中计算策略。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
int i,j;
vector<vector<int>> path(m, vector<int>(n, 0));
//初始化:若有障碍则path=0,否则为1
for (i = 0; i < m; i ++)
{
if (obstacleGrid[i][0] == 0)
path[i][0] = 1;
else
break;
}
for (j = 0; j < n; j ++)
{
if (obstacleGrid[0][j] == 0)
path[0][j] = 1;
else
break;
}
//动态规划:若有障碍则此处path=0
for(i = 1; i < m; i ++)
{
for(j = 1; j < n; j ++)
{
if(obstacleGrid[i][j] == 1)
path[i][j] = 0;
else
path[i][j] = path[i-1][j] + path[i][j-1];
}
}
return path[m-1][n-1];
}
};
PS:在其他人的答案中发现使用三目运算符可以简化代码:
//哪里不太对的样子。。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int i,j;
vector<vector<int> > path(obstacleGrid.size(), vector<int>(obstacleGrid[0].size()));
//初始化
path[0][0] = obstacleGrid[0][0] == 1 ? 0 : 1;
for (i = 1; i < path.size(); i ++)
path[i][0] = obstacleGrid[i][0] == 1 ? 0 : path[i-1][0];
for (j = 1; j < path[0].size(); j ++)
path[0][j] = obstacleGrid[0][j] == 1 ? 0 : path[0][i-1];
//动态规划
for(i = 1; i < path.size(); i ++)
for(j = 1; j < path[0].size(); j ++)
path[i][j] = obstacleGrid[i][j] == 1 ? 0 : path[i-1][j] + path[i][j-1];
return path[path.size()-1][path[0].size()-1];
}
};
120 triangle
class Solution {
public:
int minimumTotal(vector<vector<int> > &triangle) {
for (int i = triangle.size() - 2; i >= 0; --i)
for (int j = 0; j <= i; ++j)
triangle[i][j] += min(triangle[i+1][j+1],triangle[i+1][j]);
return triangle[0][0];
}
};
5.最长回文子串
字符串s中的最长回文串是s的倒转s’和s的最长连续公共子串
或者直接使用动态规划求解O(N^2),考虑Define P[ i, j ] ← true iff the substring Si … Sj is a palindrome, otherwise false.
P[ i, j ] ← ( P[ i+1, j-1 ] and Si = Sj )
或者遍历子串,以每个字母为中心向两边扩散O(N^2)
class Solution {
public:
//从中间向两边展开
string expandAroundCenter(string s, int c1, int c2) {
int l = c1, r = c2;
int n = s.length();
while (l >= 0 && r <= n-1 && s[l] == s[r]) {
l--;
r++;
}
return s.substr(l+1, r-l-1);
}
string longestPalindromeSimple(string s) {
int n = s.length();
if (n == 0) return "";
string longest = s.substr(0, 1); // a single char itself is a palindrome
for (int i = 0; i < n-1; i++) {
string p1 = expandAroundCenter(s, i, i); //长度为奇数的候选回文字符串
if (p1.length() > longest.length())
longest = p1;
string p2 = expandAroundCenter(s, i, i+1);//长度为偶数的候选回文字符串
if (p2.length() > longest.length())
longest = p2;
}
return longest;
}
};