IMAGEJ中幾種自動閾值的比較

http://www.cnblogs.com/pixels/archive/2011/01/14/1935600.html

從ImageJ中挑選了三種閾值的計算方法,下圖是運行結果。可以看出均值的方法獲得的二值結果較差。

IMAGEJ中幾種自動閾值的比較_第1张图片

 

 

下面是源代碼(改自ImageJ中的Java代碼,其中給出的參考文獻,有興趣的可以看一下)

代碼

#include "stdafx.h"
#include "cv.h"
#include "cxcore.h"
#include "highgui.h"

#pragma comment(lib, "cv.lib")
#pragma comment(lib, "cxcore.lib")
#pragma comment(lib, "highgui.lib")

int hist_size = 256;
float range_0[] = {0, 256};
float* ranges[] = {range_0};
CvHistogram *hist;

int Huang(int* data)
{
    // Implements Huang's fuzzy thresholding method 
    // Uses Shannon's entropy function (one can also use Yager's entropy function) 
    // Huang L.-K. and Wang M.-J.J. (1995) "Image Thresholding by Minimizing  
    // the Measures of Fuzziness" Pattern Recognition, 28(1): 41-51
    // M. Emre Celebi  06.15.2007
    // Ported to ImageJ plugin by G. Landini from E Celebi's fourier_0.8 routines
    int threshold=-1;
    int ih, it;
    int first_bin;
    int last_bin;
    int sum_pix;
    int num_pix;
    double term;
    double ent;  // entropy 
    double min_ent; // min entropy 
    double mu_x;

    /* Determine the first non-zero bin */
    first_bin=0;
    for (ih = 0; ih < 256; ih++ ) {
        if ( data[ih] != 0 ) {
            first_bin = ih;
            break;
        }
    }

    /* Determine the last non-zero bin */
    last_bin=255;
    for (ih = 255; ih >= first_bin; ih-- ) 
    {
        if ( data[ih] != 0 )
        {
            last_bin = ih;
            break;
        }
    }
    term = 1.0 / ( double ) ( last_bin - first_bin );
    double mu_0[256]={0.0};
    sum_pix = num_pix = 0;
    for ( ih = first_bin; ih < 256; ih++ )
    {
        sum_pix += ih * data[ih];
        num_pix += data[ih];
        /* NUM_PIX cannot be zero ! */
        mu_0[ih] = sum_pix / ( double ) num_pix;
    }

    double mu_1[256]={0.0};
    sum_pix = num_pix = 0;
    for ( ih = last_bin; ih > 0; ih-- )
    {
        sum_pix += ih * data[ih];
        num_pix += data[ih];
        /* NUM_PIX cannot be zero ! */
        mu_1[ih - 1] = sum_pix / ( double ) num_pix;
    }

    /* Determine the threshold that minimizes the fuzzy entropy */
    threshold = -1;
    min_ent = 65535;
    for ( it = 0; it < 256; it++ )
    {
        ent = 0.0;
        for ( ih = 0; ih <= it; ih++ ) 
        {
            /* Equation (4) in Ref. 1 */
            mu_x = 1.0 / ( 1.0 + term * abs ( ih - mu_0[it] ) );
            if ( !((mu_x  < 1e-06 ) || ( mu_x > 0.999999))) 
            {
                /* Equation (6) & (8) in Ref. 1 */
                ent += data[ih] * ( -mu_x * log ( mu_x ) - ( 1.0 - mu_x ) * log ( 1.0 - mu_x ) );
            }
        }

        for ( ih = it + 1; ih < 256; ih++ ) 
        {
            /* Equation (4) in Ref. 1 */
            mu_x = 1.0 / ( 1.0 + term * abs ( ih - mu_1[it] ) );
            if ( !((mu_x  < 1e-06 ) || ( mu_x > 0.999999))) 
            {
                /* Equation (6) & (8) in Ref. 1 */
                ent += data[ih] * ( -mu_x * log ( mu_x ) - ( 1.0 - mu_x ) * log ( 1.0 - mu_x ) );
            }
        }
        /* No need to divide by NUM_ROWS * NUM_COLS * LOG(2) ! */
        if ( ent < min_ent ) 
        {
            min_ent = ent;
            threshold = it;
        }
    }
    return threshold;
}


bool bimodalTest(double *y) 
{
    int len=256;//y.length;
    bool b = false;
    int modes = 0;

    for (int k=1;k<len-1;k++)
    {
        if (y[k-1] < y[k] && y[k+1] < y[k]) 
        {
            modes++;
            if (modes>2)
                return false;
        }
    }
    if (modes == 2)
        b = true;
    return b;
}

int Intermodes(int *data ) 
{
    // J. M. S. Prewitt and M. L. Mendelsohn, "The analysis of cell images," in
    // Annals of the New York Academy of Sciences, vol. 128, pp. 1035-1053, 1966.
    // ported to ImageJ plugin by G.Landini from Antti Niemisto's Matlab code (GPL)
    // Original Matlab code Copyright (C) 2004 Antti Niemisto
    // See http://www.cs.tut.fi/~ant/histthresh/ for an excellent slide presentation
    // and the original Matlab code.
    //
    // Assumes a bimodal histogram. The histogram needs is smoothed (using a
    // running average of size 3, iteratively) until there are only two local maxima.
    // j and k
    // Threshold t is (j+k)/2.
    // Images with histograms having extremely unequal peaks or a broad and
    // ?at valley are unsuitable for this method.
    double iHisto[256]={0};
    double tHisto[256]={0};
    int iter =0;
    int threshold=-1;
    for (int i=0; i<256; i++)
    {
        iHisto[i]=(double) data[i];
        tHisto[i] = (double)data[i];
    }

    

    while (!bimodalTest(iHisto) )
    {
        //smooth with a 3 point running mean filter
        for (int i=1; i<255; i++)
            tHisto[i]= (iHisto[i-1] + iHisto[i] + iHisto[i+1])/3;
        tHisto[0] = (iHisto[0]+iHisto[1])/3; //0 outside
        tHisto[255] = (iHisto[254]+iHisto[255])/3; //0 outside
        //iHisto = tHisto;
        for(int i=0; i<256; i++)
        {
            iHisto[i] = tHisto[i];
        }
        iter++;
        if (iter>10000) 
        {
            threshold = -1;
            //IJ.log("Intermodes: threshold not found after 10000 iterations.");
            return threshold;
        }
    }

    // The threshold is the mean between the two peaks.
    int tt=0;
    for (int i=1; i<255; i++) 
    {
        if (iHisto[i-1] < iHisto[i] && iHisto[i+1] < iHisto[i])
        {
            tt += i;
            //IJ.log("mode:" +i);
        }
    }
    threshold = (int) cvFloor(tt/2.0);
    return threshold;
}

int Mean(int* data )
{
    // C. A. Glasbey, "An analysis of histogram-based thresholding algorithms,"
    // CVGIP: Graphical Models and Image Processing, vol. 55, pp. 532-537, 1993.
    //
    // The threshold is the mean of the greyscale data
    int threshold = -1;
    double tot=0, sum=0;
    for (int i=0; i<256; i++){
        tot+= data[i];
        sum+=(i*data[i]);
    }
    threshold =cvFloor(sum/tot);
    return threshold;
}

int _tmain(int argc, _TCHAR* argv[])
{
    IplImage *srcImg = cvLoadImage("D:\\luosi.jpg");
    IplImage *grayImg = cvCreateImage(cvGetSize(srcImg), 8, 1);
    cvCvtColor(srcImg, grayImg, CV_BGR2GRAY);

    hist = cvCreateHist(1, &hist_size, CV_HIST_ARRAY, ranges, 1);
    cvCalcHist(&grayImg, hist, 0, NULL);    
    int data[256];
    for(int idx = 0; idx < 256; ++idx)
    {
        data[idx] = cvGet1D(hist->bins, idx).val[0];
    }

    //////////////////////////////////////////////////////////////////////////
    int threshold = Huang(data);
    IplImage *binaryImg = cvCreateImage(cvGetSize(grayImg), 8, 1);
    cvThreshold(grayImg, binaryImg, threshold, 255, CV_THRESH_BINARY);
    cvNamedWindow("Huang");
    cvShowImage("Huang", binaryImg);

    //////////////////////////////////////////////////////////////////////////
    threshold = Intermodes(data);
    cvThreshold(grayImg, binaryImg, threshold, 255, CV_THRESH_BINARY);
    cvNamedWindow("Intermodes");
    cvShowImage("Intermodes", binaryImg);

    //////////////////////////////////////////////////////////////////////////
    threshold = Mean(data);
    cvThreshold(grayImg, binaryImg, threshold, 255, CV_THRESH_BINARY);
    cvNamedWindow("Mean");
    cvShowImage("Mean", binaryImg);

    cvWaitKey(0);

    return 0;
}



你可能感兴趣的:(image,function,filter,matlab,processing,float)