- Class00.4自动求导代码
Morning的呀
深度学习python深度学习pytorch
Class00.4自动求导代码importtorch#定义一个4个元素的向量x=torch.arange(4.0)x#支持梯度计算x.requires_grad_(True)#计算梯度x.grad#计算向量点积#torch.dot(a,b):向量点积计算y=2*torch.dot(x,x)#打印结果y#进行反向传播#2x²的导数是4xy.backward()#计算梯度x.grad#进行结果验证x.
- Python机器学习元学习库higher
音程
机器学习人工智能python机器学习
higher是一个用于元学习(Meta-Learning)和高阶导数(Higher-ordergradients)的Python库,专为PyTorch设计。它扩展了PyTorch的自动微分机制,使得在训练过程中可以动态地计算参数的梯度更新,并把这些更新过程纳入到更高阶的梯度计算中。一、主要用途higher主要用于以下场景:元学习(Meta-Learning)比如MAML(Model-Agnosti
- 【机器学习&深度学习】反向传播机制
目录一、一句话定义二、类比理解三、为什重要?四、用生活例子解释:神经网络=烹饪机器人4.1第一步:尝一口(前向传播)4.2第二步:倒着推原因(反向传播)五、换成人工智能流程说一遍六、图示类比:找山顶(最优参数)七、总结一句人话八、PyTorch代码示例:亲眼看到每一层的梯度九、梯度=损失函数对参数的偏导数十、类比总结反向传播(Backpropagation)是神经网络中训练过程的核心机制,它就像“
- 基于OpenCV的银行卡识别
Yang了个羊
OpenCVopencv人工智能计算机视觉
一、设计思路1、预处理银行卡号序列模版,对其进行一系列形态学操作,继而进行轮廓识别,构建与各个轮廓所对应的数字元组。2、对将要识别的银行卡进行灰度处理、二值化、阈值处理,sobel算子边缘检测等预处理,再通过模版匹配方法找出与已知轮廓高度符合的数字。二、代码复现预操作:自定义一个cv_show函数,便于后来的图像展示。#绘图展示defcv_show(name,img):cv2.imshow(nam
- 认识Jacobian
一碗姜汤
统计学习线性代数矩阵
Jacobian(雅可比矩阵)是数学中用于描述多元函数在某一点处导数的重要概念,广泛应用于微积分、微分几何、数值分析等领域。以下从定义、数学表达、几何意义、应用场景等方面详细解析:一、定义与数学表达1.基本定义若有一个从欧式空间Rn\mathbb{R}^nRn到Rm\mathbb{R}^mRm的多元函数:f:Rn→Rmf:\mathbb{R}^n\to\mathbb{R}^mf:Rn→Rm,其分量
- 深度学习:梯度下降法
数字化与智能化
人工智能深度学习深度学习梯度下降法
一、梯度的概念(1)什么是梯度梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。对于一个多元函数f(x1,x2,...,xn),其梯度是一个由函数偏导数组成的向量,其梯度表示为:Gradient=(∂f/∂x1,∂f/∂x2,...,∂f/∂xn)其中,∂f/∂xi表示函数f对第i个自变量
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- XGBoost算法原理及Python实现
法号清水
算法python开发语言
一、概述 XGBoost是一种基于梯度提升框架的机器学习算法,它通过迭代地训练一系列决策树来构建模型。核心思想是通过不断地在已有模型的基础上,拟合负梯度方向的残差(真实值与预测值的差)来构建新的弱学习器,达到逐步优化模型的目的。 XGBoost在构建决策树时,利用了二阶导数信息。在损失函数的优化过程中,不仅考虑了一阶导数(梯度),还引入了二阶导数(海森矩阵),这使得算法能够更精确地找到损失函数
- AI大模型学习路线(2025最新)神仙级大模型教程分享,非常详细收藏这一篇就够!
AI大模型-大飞
人工智能学习语言模型大模型大模型学习LLMAI大模型
大模型学习路线图前排提示,文末有大模型AGI-CSDN独家资料包哦!第一阶段:基础知识准备在这个阶段,您需要打下坚实的数学基础和编程基础,这是学习任何机器学习和深度学习技术所必需的。1.数学基础线性代数:矩阵运算、向量空间、特征值与特征向量等。概率统计:随机变量、概率分布、贝叶斯定理等。微积分:梯度、偏导数、积分等。学习资料书籍:GilbertStrang,《线性代数及其应用》SheldonRos
- 数学符号和标识中英文列表(含义与示例)
纸上笔下
MatheMatiCs算法数学符号英文中文微积分导数
数学符号和标识的参考,涵盖了数学的各个主要分支,并提供清晰的定义和示例,方便快速查找和学习收藏。目录基础数学符号几何符号代数符号线性代数符号概率与统计符号集合论符号逻辑符号微积分与分析符号数字与字母符号特点中英对照:提供符号的英文术语,方便国际交流和文献阅读。应用示例:提供典型数学表达式,例如导数计算(ddx(x2)=2x\frac{d}{dx}(x^2)=2xdxd(x2)=2x)。1.基础数学
- 数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全
猫头虎技术团队
已解决的Bug专栏线性代数opencv数据挖掘语音识别计算机视觉人工智能机器学习
数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全机器学习/深度学习的核心算法背后,往往需要用到矩阵运算、特征向量、梯度下降等;如果连矩阵乘法、特征值、偏导数都没搞懂,就很难理解模型原理。摘要文章目录数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全摘要1.开发场景介绍1.1场景背景1.2技术细节2.开发环境3.问题分析3.1线性代数缺失带来的挑战3.2概率统计短板
- 第十六届蓝桥杯国赛(2025)C/C++B组 蓝桥星数字 独家解析
apcipot_rain
算法c++算法开发语言
这题我中午是12点以后开始做的,只剩下1个小时了,12点50的时候完成了框架,但是细节总是实现不对,现在晚上来复盘的时候才把这题A出来了。但是,就像高考的导数你整个思路都会,你死在了求导上。。。(刚才A出来的那一刻真的快把我气哭了哈哈哈哈哈哈还不如不做出来呢)题面分析众所周知,蓝桥杯是数学杯。所以这题有没有什么数学方法来求解呢?我们不妨先观察一下10-100的数据,一共有5*9个:10121416
- matlab图像边缘检测——sobel算子
安心不心安
数字图像处理matlab计算机视觉开发语言
1.sobel算子概述Sobel算子是一种常用的边缘检测算子,它可以通过计算像素点的梯度来检测图像中的边缘。该算子基于图像上某一点周围的像素值变化情况,通过卷积运算来计算水平方向和垂直方向上的梯度。Sobel算子使用两个3x3的模板进行卷积操作,分别对应水平方向和垂直方向的梯度计算。这两个模板分别称为Gx和Gy。水平方向模板Gx:-101-202-101垂直方向模板Gy:121000-1-2-1通
- 泰勒展开式
泰勒展开式的详解泰勒展开(TaylorExpansion)是数学分析中的一个重要工具,用来将一个函数在某一点附近表示成多项式的形式。通过泰勒展开,我们可以将一个函数在某点的值和导数信息转化为多项式,从而在该点附近对该函数进行逼近。1.泰勒展开的定义假设函数f(x)f(x)f(x)在某点x=ax=ax=a处具有所有阶数的导数,那么该函数的泰勒展开式可以写成:f(x)=f(a)+f′(a)(x−a)+
- AI大模型从0到1记录学习 大模型技术之数学基础 day26
Gsen2819
算法人工智能大模型人工智能学习算法机器学习目标检测深度学习
高等数学导数导数的概念导数(derivative)是微积分中的一个概念。函数在某一点的导数是指这个函数在这一点附近的变化率(即函数在这一点的切线斜率)。导数的本质是通过极限的概念对函数进行局部的线性逼近。当函数f的自变量在一点x_0上产生一个增量h时,函数输出值的增量∆y与自变量增量∆x的比值在∆x趋于0时的极限如果存在,即为f在x_0处的导数,记作f’(x_0)、df/dx(x_0)或〖df/d
- 程序员转向人工智能
CoderIsArt
机器学习与深度学习人工智能
以下是针对程序员转向人工智能(AI)领域的学习路线建议,分为基础、核心技术和进阶方向,结合你的编程背景进行优化:1.夯实基础数学基础(选择性补足,边学边用)线性代数:矩阵运算、特征值、张量(深度学习基础)概率与统计:贝叶斯定理、分布、假设检验微积分:梯度、导数(优化算法核心)优化算法:梯度下降、随机梯度下降(SGD)学习资源:3Blue1Brown(视频)、《程序员的数学》系列编程工具Python
- pytorch——自动微分
求导是几乎所有深度学习优化算法的关键步骤。深度学习框架通过自动计算导数,即自动微分来加快求导。标量变量的反向传播对函数y=2xTxy=2x^Txy=2xTx关于列向量xxx求导importtorchx=torch.arange(4.0)print(f'x:{x}')x.requires_grad_(True)print(f'x.grad:{x.grad}')y=2*torch.dot(x,x)y.
- Pytorch框架——自动微分和反向传播
Xyz_Overlord
pytorch人工智能python
一、自动微分概念自动微分(AutomaticDifferentiation,AD)是一种利用计算机程序自动计算函数导数的技术,它是机器学习和优化算法中的核心工具(如神经网络的梯度下降),通过反向传播计算并更新梯度。计算梯度的目的是更新权重w和b,,其中value是梯度值,学习率需要提前指定,求导计算梯度,前面我们学过了手动求导,这次使用自动微分的方法,来简化我们的工作量。注意:1.w和b一定是可自
- matlab求解常微分方程的实验,实验五 - - 用matlab求解常微分方程
胡千山
实验五用matlab求解常微分方程1.微分方程的概念未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。常微分方程的一般形式为F(t,y,y',y\,?,y(n))?0如果未知函数是多元函数,成为偏微分方程。联系一些未知函数的一组微分方程组称为微分方程组。微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。若方程中未知
- 【大模型学习路线首发】 AI大模型学习路线:(非常详细)AI大模型学习路线,收藏这一篇就够了!
AI大模型-大飞
人工智能学习程序员大模型学习AI大模型大模型大模型教程
1.打好基础:数学与编程数学基础线性代数:理解矩阵、向量、特征值、特征向量等概念。推荐课程:KhanAcademy的线性代数课程、MIT的线性代数公开课。微积分:掌握导数、积分、多变量微积分等基础知识。推荐课程:KhanAcademy的微积分课程、MIT的微积分公开课。概率与统计:理解概率分布、贝叶斯定理、统计推断等概念。推荐课程:KhanAcademy的概率与统计课程、Coursera的“Pro
- Redis与MongoDB整合:多模型数据库架构设计
数据库管理艺术
redismongodb数据库架构ai
Redis与MongoDB整合:多模型数据库架构设计——从理论到实践的深度解析关键词多模型数据库、内存键值存储、文档数据库、缓存一致性、数据分层架构、混合事务处理、分布式系统设计摘要本文系统探讨Redis(内存键值数据库)与MongoDB(文档数据库)的整合架构设计,覆盖从基础概念到高级实践的全生命周期。通过第一性原理推导数据访问模式的本质需求,构建层次化的技术解释框架(专家级架构设计→中级实现策
- 驯服不可微操作——梯度的“代理”艺术**
爱看烟花的码农
DL人工智能
教程:驯服不可微操作——梯度的“代理”艺术第一部分:核心思想——计算图的“双重人格”在标准的深度学习中,前向传播和反向传播是“镜像”关系:反向传播严格地沿着前向传播的路径反向计算导数。但为了处理离散操作,我们打破这种对称性,赋予计算图一种“双重人格”:前向人格(执行者):它忠实地执行我们定义的任何操作,无论是否离散。如果是argmax,它就输出索引;如果是量化,它就输出离散的整数。它的目标是计算出
- 图像基础算法学习笔记
jerry201108
视觉基础知识学习笔记计算机视觉
目录概要一、图像采集二、图像标注四、图像几何变换五、图像边缘检测Sobel算子Scharrt算子Laplacian算子Canny边缘检测六、形态学转换十三、图像去噪概要参考书籍:《机器视觉与人工智能应用开发技术》廖建尚,钟君柳出版时间:2024-02-01图像采集图像标注:绘制直线、矩阵、圆形、椭圆和多边形图像灰度转换:灰度化、二值化等图像转换方法图像几何变换:图像旋转、图像镜像、图像缩放、图像透
- 拐点 两侧的 f‘‘(x) 是否变号
hitsz_syl
拐点
一、拐点的定义函数的凹凸性发生了变化。二、判断拐点的方法1.利用二阶导数f′′(x)f''(x)f′′(x)步骤如下:✅Step1:求二阶导数f′′(x)f''(x)f′′(x)✅Step2:找出使f′′(x)=0f''(x)=0f′′(x)=0或不存在二阶导数的点✅Step3:判断这些点两侧的f′′(x)f''(x)f′′(x)是否变号变号⇒是拐点不变号⇒不是拐点三、与凹凸性的关系区域函数的凹凸
- arcsin x
hitsz_syl
概率论线性代数机器学习
✅一、导数公式ddxarcsinx=11−x2,定义域x∈(−1,1)\frac{d}{dx}\arcsinx=\frac{1}{\sqrt{1-x^2}},\quad\text{定义域}x\in(-1,1)dxdarcsinx=1−x21,定义域x∈(−1,1)✅二、泰勒展开式(TaylorExpansion)函数arcsinx\arcsinxarcsinx在x=0x=0x=0处的泰勒展开为
- 李永乐复习全书高等数学 第二章 一元函数微分学
古月忻
考研数学一高等数学刷题错题记录#考研数学一高等数学复习全书高等数学复习全书考研其他
2.1 导数与微分,导数的计算例2 设g(x)g(x)g(x)在x=0x=0x=0处存在二阶导数,且g(0)=1,g′(0)=2,g′′(0)=1g(0)=1,g'(0)=2,g''(0)=1g(0)=1,g′(0)=2,g′′(0)=1,并设f(x)={g(x)−e2xx,x≠00,x=0,f(x)=\begin{cases}\cfrac{g(x)-e^{2x}}{x},&x\ne0\\0,
- 《高等数学》(同济大学·第7版)第四章第二节换元积分法
没有女朋友的程序员
高等数学
一、换元积分法的基本思想换元积分法就像"搭积木",通过变量替换把复杂积分变成简单积分。主要有两种方法:第一类换元法(凑微分法)核心:把被积函数的一部分和dx凑成新的微分口诀:“看结构,凑微分,换变量,求积分”第二类换元法核心:直接设新的变量替换常用于含根式的积分二、第一类换元法详解我们通过具体例子来理解:例1:计算∫2x·cos(x²)dx解:观察发现x²的导数是2x,正好有2xdx设u=x²,那
- 《高等数学 第7版(同济大学 上册).pdf》资源介绍
孟津葵Gilda
《高等数学第7版(同济大学上册).pdf》资源介绍【下载地址】高等数学第7版同济大学上册.pdf资源介绍本资源提供《高等数学第7版(同济大学上册)》电子书,内容涵盖函数与极限、导数与微分、微分方程等核心章节,适合工科和理科学生系统学习。书中包含详细的理论讲解、丰富实例及习题答案,帮助读者深入理解高等数学知识。章节划分清晰,便于查找和学习。资源仅供学习研究使用,请合理利用,尊重知识产权。项目地址:h
- 矩阵的偏导数
AIgeeksu
机器学习算法矩阵概率论线性代数机器学习人工智能
设X=(xij)m×nX=(x_{ij})_{m\timesn}X=(xij)m×n,函数f(X)=f(x11,x12,…,x1n,x21,…,xmn)f(X)=f(x_{11},x_{12},\ldots,x_{1n},x_{21},\ldots,x_{mn})f(X)=f(x11,x12,…,x1n,x21,…,xmn)是一个m×nm\timesnm×n元的多元函数,且偏导数∂f∂xij(i=
- 泊松分布的矩母函数与特征函数
FakeOccupational
服务化&架构html概率论前端
矩母函数与特征函数矩母函数与特征函数与分布函数一一对应矩母函数与特征函数与分布函数一一对应矩母函数与特征函数与分布函数一一对应矩母函数ψX(t)=E(etX)性质:ψX(t)′=E(XetX),当t=0,则为一阶矩(n次导数对应n阶矩)ψ_X(t)=E(e^{tX})\\性质:ψ_X(t)'=E(Xe^{tX}),当t=0,则为一阶矩(n次导数对应n阶矩)ψX(t)=E(etX)性质:ψX(t)′
- 桌面上有多个球在同时运动,怎么实现球之间不交叉,即碰撞?
换个号韩国红果果
html小球碰撞
稍微想了一下,然后解决了很多bug,最后终于把它实现了。其实原理很简单。在每改变一个小球的x y坐标后,遍历整个在dom树中的其他小球,看一下它们与当前小球的距离是否小于球半径的两倍?若小于说明下一次绘制该小球(设为a)前要把他的方向变为原来相反方向(与a要碰撞的小球设为b),即假如当前小球的距离小于球半径的两倍的话,马上改变当前小球方向。那么下一次绘制也是先绘制b,再绘制a,由于a的方向已经改变
- 《高性能HTML5》读后整理的Web性能优化内容
白糖_
html5
读后感
先说说《高性能HTML5》这本书的读后感吧,个人觉得这本书前两章跟书的标题完全搭不上关系,或者说只能算是讲解了“高性能”这三个字,HTML5完全不见踪影。个人觉得作者应该首先把HTML5的大菜拿出来讲一讲,再去分析性能优化的内容,这样才会有吸引力。因为只是在线试读,没有机会看后面的内容,所以不胡乱评价了。
- [JShop]Spring MVC的RequestContextHolder使用误区
dinguangx
jeeshop商城系统jshop电商系统
在spring mvc中,为了随时都能取到当前请求的request对象,可以通过RequestContextHolder的静态方法getRequestAttributes()获取Request相关的变量,如request, response等。 在jshop中,对RequestContextHolder的
- 算法之时间复杂度
周凡杨
java算法时间复杂度效率
在
计算机科学 中,
算法 的时间复杂度是一个
函数 ,它定量描述了该算法的运行时间。这是一个关于代表算法输入值的
字符串 的长度的函数。时间复杂度常用
大O符号 表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是
渐近 的,它考察当输入值大小趋近无穷时的情况。
这样用大写O()来体现算法时间复杂度的记法,
- Java事务处理
g21121
java
一、什么是Java事务 通常的观念认为,事务仅与数据库相关。 事务必须服从ISO/IEC所制定的ACID原则。ACID是原子性(atomicity)、一致性(consistency)、隔离性(isolation)和持久性(durability)的缩写。事务的原子性表示事务执行过程中的任何失败都将导致事务所做的任何修改失效。一致性表示当事务执行失败时,所有被该事务影响的数据都应该恢复到事务执行前的状
- Linux awk命令详解
510888780
linux
一. AWK 说明
awk是一种编程语言,用于在linux/unix下对文本和数据进行处理。数据可以来自标准输入、一个或多个文件,或其它命令的输出。它支持用户自定义函数和动态正则表达式等先进功能,是linux/unix下的一个强大编程工具。它在命令行中使用,但更多是作为脚本来使用。
awk的处理文本和数据的方式:它逐行扫描文件,从第一行到
- android permission
布衣凌宇
Permission
<uses-permission android:name="android.permission.ACCESS_CHECKIN_PROPERTIES" ></uses-permission>允许读写访问"properties"表在checkin数据库中,改值可以修改上传
<uses-permission android:na
- Oracle和谷歌Java Android官司将推迟
aijuans
javaoracle
北京时间 10 月 7 日,据国外媒体报道,Oracle 和谷歌之间一场等待已久的官司可能会推迟至 10 月 17 日以后进行,这场官司的内容是 Android 操作系统所谓的 Java 专利权之争。本案法官 William Alsup 称根据专利权专家 Florian Mueller 的预测,谷歌 Oracle 案很可能会被推迟。 该案中的第二波辩护被安排在 10 月 17 日出庭,从目前看来
- linux shell 常用命令
antlove
linuxshellcommand
grep [options] [regex] [files]
/var/root # grep -n "o" *
hello.c:1:/* This C source can be compiled with:
- Java解析XML配置数据库连接(DOM技术连接 SAX技术连接)
百合不是茶
sax技术Java解析xml文档dom技术XML配置数据库连接
XML配置数据库文件的连接其实是个很简单的问题,为什么到现在才写出来主要是昨天在网上看了别人写的,然后一直陷入其中,最后发现不能自拔 所以今天决定自己完成 ,,,,现将代码与思路贴出来供大家一起学习
XML配置数据库的连接主要技术点的博客;
JDBC编程 : JDBC连接数据库
DOM解析XML: DOM解析XML文件
SA
- underscore.js 学习(二)
bijian1013
JavaScriptunderscore
Array Functions 所有数组函数对参数对象一样适用。1.first _.first(array, [n]) 别名: head, take 返回array的第一个元素,设置了参数n,就
- plSql介绍
bijian1013
oracle数据库plsql
/*
* PL/SQL 程序设计学习笔记
* 学习plSql介绍.pdf
* 时间:2010-10-05
*/
--创建DEPT表
create table DEPT
(
DEPTNO NUMBER(10),
DNAME NVARCHAR2(255),
LOC NVARCHAR2(255)
)
delete dept;
select
- 【Nginx一】Nginx安装与总体介绍
bit1129
nginx
启动、停止、重新加载Nginx
nginx 启动Nginx服务器,不需要任何参数u
nginx -s stop 快速(强制)关系Nginx服务器
nginx -s quit 优雅的关闭Nginx服务器
nginx -s reload 重新加载Nginx服务器的配置文件
nginx -s reopen 重新打开Nginx日志文件
- spring mvc开发中浏览器兼容的奇怪问题
bitray
jqueryAjaxspringMVC浏览器上传文件
最近个人开发一个小的OA项目,属于复习阶段.使用的技术主要是spring mvc作为前端框架,mybatis作为数据库持久化技术.前台使用jquery和一些jquery的插件.
在开发到中间阶段时候发现自己好像忽略了一个小问题,整个项目一直在firefox下测试,没有在IE下测试,不确定是否会出现兼容问题.由于jquer
- Lua的io库函数列表
ronin47
lua io
1、io表调用方式:使用io表,io.open将返回指定文件的描述,并且所有的操作将围绕这个文件描述
io表同样提供三种预定义的文件描述io.stdin,io.stdout,io.stderr
2、文件句柄直接调用方式,即使用file:XXX()函数方式进行操作,其中file为io.open()返回的文件句柄
多数I/O函数调用失败时返回nil加错误信息,有些函数成功时返回nil
- java-26-左旋转字符串
bylijinnan
java
public class LeftRotateString {
/**
* Q 26 左旋转字符串
* 题目:定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
* 如把字符串abcdef左旋转2位得到字符串cdefab。
* 请实现字符串左旋转的函数。要求时间对长度为n的字符串操作的复杂度为O(n),辅助内存为O(1)。
*/
pu
- 《vi中的替换艺术》-linux命令五分钟系列之十一
cfyme
linux命令
vi方面的内容不知道分类到哪里好,就放到《Linux命令五分钟系列》里吧!
今天编程,关于栈的一个小例子,其间我需要把”S.”替换为”S->”(替换不包括双引号)。
其实这个不难,不过我觉得应该总结一下vi里的替换技术了,以备以后查阅。
1
所有替换方案都要在冒号“:”状态下书写。
2
如果想将abc替换为xyz,那么就这样
:s/abc/xyz/
不过要特别
- [轨道与计算]新的并行计算架构
comsci
并行计算
我在进行流程引擎循环反馈试验的过程中,发现一个有趣的事情。。。如果我们在流程图的每个节点中嵌入一个双向循环代码段,而整个流程中又充满着很多并行路由,每个并行路由中又包含着一些并行节点,那么当整个流程图开始循环反馈过程的时候,这个流程图的运行过程是否变成一个并行计算的架构呢?
- 重复执行某段代码
dai_lm
android
用handler就可以了
private Handler handler = new Handler();
private Runnable runnable = new Runnable() {
public void run() {
update();
handler.postDelayed(this, 5000);
}
};
开始计时
h
- Java实现堆栈(list实现)
datageek
数据结构——堆栈
public interface IStack<T> {
//元素出栈,并返回出栈元素
public T pop();
//元素入栈
public void push(T element);
//获取栈顶元素
public T peek();
//判断栈是否为空
public boolean isEmpty
- 四大备份MySql数据库方法及可能遇到的问题
dcj3sjt126com
DBbackup
一:通过备份王等软件进行备份前台进不去?
用备份王等软件进行备份是大多老站长的选择,这种方法方便快捷,只要上传备份软件到空间一步步操作就可以,但是许多刚接触备份王软件的客用户来说还原后会出现一个问题:因为新老空间数据库用户名和密码不统一,网站文件打包过来后因没有修改连接文件,还原数据库是好了,可是前台会提示数据库连接错误,网站从而出现打不开的情况。
解决方法:学会修改网站配置文件,大多是由co
- github做webhooks:[1]钩子触发是否成功测试
dcj3sjt126com
githubgitwebhook
转自: http://jingyan.baidu.com/article/5d6edee228c88899ebdeec47.html
github和svn一样有钩子的功能,而且更加强大。例如我做的是最常见的push操作触发的钩子操作,则每次更新之后的钩子操作记录都会在github的控制板可以看到!
工具/原料
github
方法/步骤
- ">的作用" target="_blank">JSP中的作用
蕃薯耀
JSP中<base href="<%=basePath%>">的作用
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
- linux下SAMBA服务安装与配置
hanqunfeng
linux
局域网使用的文件共享服务。
一.安装包:
rpm -qa | grep samba
samba-3.6.9-151.el6.x86_64
samba-common-3.6.9-151.el6.x86_64
samba-winbind-3.6.9-151.el6.x86_64
samba-client-3.6.9-151.el6.x86_64
samba-winbind-clients
- guava cache
IXHONG
cache
缓存,在我们日常开发中是必不可少的一种解决性能问题的方法。简单的说,cache 就是为了提升系统性能而开辟的一块内存空间。
缓存的主要作用是暂时在内存中保存业务系统的数据处理结果,并且等待下次访问使用。在日常开发的很多场合,由于受限于硬盘IO的性能或者我们自身业务系统的数据处理和获取可能非常费时,当我们发现我们的系统这个数据请求量很大的时候,频繁的IO和频繁的逻辑处理会导致硬盘和CPU资源的
- Query的开始--全局变量,noconflict和兼容各种js的初始化方法
kvhur
JavaScriptjquerycss
这个是整个jQuery代码的开始,里面包含了对不同环境的js进行的处理,例如普通环境,Nodejs,和requiredJs的处理方法。 还有jQuery生成$, jQuery全局变量的代码和noConflict代码详解 完整资源:
http://www.gbtags.com/gb/share/5640.htm jQuery 源码:
(
- 美国人的福利和中国人的储蓄
nannan408
今天看了篇文章,震动很大,说的是美国的福利。
美国医院的无偿入院真的是个好措施。小小的改善,对于社会是大大的信心。小孩,税费等,政府不收反补,真的体现了人文主义。
美国这么高的社会保障会不会使人变懒?答案是否定的。正因为政府解决了后顾之忧,人们才得以倾尽精力去做一些有创造力,更造福社会的事情,这竟成了美国社会思想、人
- N阶行列式计算(JAVA)
qiuwanchi
N阶行列式计算
package gaodai;
import java.util.List;
/**
* N阶行列式计算
* @author 邱万迟
*
*/
public class DeterminantCalculation {
public DeterminantCalculation(List<List<Double>> determina
- C语言算法之打渔晒网问题
qiufeihu
c算法
如果一个渔夫从2011年1月1日开始每三天打一次渔,两天晒一次网,编程实现当输入2011年1月1日以后任意一天,输出该渔夫是在打渔还是在晒网。
代码如下:
#include <stdio.h>
int leap(int a) /*自定义函数leap()用来指定输入的年份是否为闰年*/
{
if((a%4 == 0 && a%100 != 0
- XML中DOCTYPE字段的解析
wyzuomumu
xml
DTD声明始终以!DOCTYPE开头,空一格后跟着文档根元素的名称,如果是内部DTD,则再空一格出现[],在中括号中是文档类型定义的内容. 而对于外部DTD,则又分为私有DTD与公共DTD,私有DTD使用SYSTEM表示,接着是外部DTD的URL. 而公共DTD则使用PUBLIC,接着是DTD公共名称,接着是DTD的URL.
私有DTD
<!DOCTYPErootSYST