FZU - 2039 Pets (网络流最大流)

题意:
n只顾客,m个宠物,e种条件,条件表示顾客x不会买宠物y,每个顾客只买一只宠物。求最多卖出几只宠物

思路:网络流,建图如果客户x不买宠物y,就把那点边标记为0,否则标记为1,然后求该图的最大流。

#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int N = 210;
int cap[N][N] ,flow[N][N];
int a[N],p[N];
int n,m,e;
int maxflow(int s,int t) {
	int f = 0;
	queue<int> que;
	memset(flow, 0, sizeof(flow));
	while(true) {
		memset(a,0,sizeof(a));
		a[s] = INF;
		que.push(s);
		while(!que.empty()) {
			int u = que.front();
			que.pop();
			for(int v = 0; v <= t; v++) {
				if(!a[v] && cap[u][v] > flow[u][v]) {
					p[v] = u;
					que.push(v);
					a[v] = min(a[u],cap[u][v] - flow[u][v]);
				}
			}
		}
		if(a[t] == 0) {
			break;
		}
		for(int u = t; u != s; u = p[u]) {
			flow[p[u]][u] += a[t];
			flow[u][p[u]] -= a[t];
		}
		f += a[t];
	}
	return f;
}
void init() {
	memset(cap,0,sizeof(cap));
	for(int u = 1; u <= n; u++) {
		for(int v = n+1; v <= n+m; v++) {
			cap[u][v] = 1;
		}
	}
	for(int v = 1; v <= n; v++) {
		cap[0][v] = 1;
	}
	int t = n + m + 1;
	for(int u = n+1; u <= n+m; u++) {
		cap[u][t] = 1; 
	}
}
int main() {
	int T;
	int u,v;
	int cas = 1;
	scanf("%d",&T);
	while(T--) {
		scanf("%d%d%d",&n,&m,&e);
		init();
		for(int i = 0; i < e; i++) {
			scanf("%d%d",&u,&v);
			v += n;
			cap[u][v] = 0;
		}
		int ans = maxflow(0, n + m + 1);
		printf("Case %d: %d\n",cas++,ans);
	}
	return 0;
}


你可能感兴趣的:(2039,FZU,Pets)