Limak is a little polar bear. He doesn't have many toys and thus he often plays with polynomials.
He considers a polynomial valid if its degree is n and its coefficients are integers not exceeding k by the absolute value. More formally:
Let a0, a1, ..., an denote the coefficients, so . Then, a polynomial P(x) is valid if all the following conditions are satisfied:
Limak has recently got a valid polynomial P with coefficients a0, a1, a2, ..., an. He noticed that P(2) ≠ 0 and he wants to change it. He is going to change one coefficient to get a valid polynomial Q of degree n that Q(2) = 0. Count the number of ways to do so. You should count two ways as a distinct if coefficients of target polynoms differ.
The first line contains two integers n and k (1 ≤ n ≤ 200 000, 1 ≤ k ≤ 109) — the degree of the polynomial and the limit for absolute values of coefficients.
The second line contains n + 1 integers a0, a1, ..., an (|ai| ≤ k, an ≠ 0) — describing a valid polynomial . It's guaranteed that P(2) ≠ 0.
Print the number of ways to change one coefficient to get a valid polynomial Q that Q(2) = 0.
3 1000000000 10 -9 -3 5
3
3 12 10 -9 -3 5
2
2 20 14 -7 19
0
In the first sample, we are given a polynomial P(x) = 10 - 9x - 3x2 + 5x3.
Limak can change one coefficient in three ways:
In the second sample, we are given the same polynomial. This time though, k is equal to 12 instead of 109. Two first of ways listed above are still valid but in the third way we would get |a1| > k what is not allowed. Thus, the answer is 2 this time.
#include<stdio.h> #include<iostream> #include<string.h> #include<string> #include<ctype.h> #include<math.h> #include<set> #include<map> #include<vector> #include<queue> #include<bitset> #include<algorithm> #include<time.h> using namespace std; void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); } #define MS(x,y) memset(x,y,sizeof(x)) #define MC(x,y) memcpy(x,y,sizeof(x)) #define MP(x,y) make_pair(x,y) #define ls o<<1 #define rs o<<1|1 typedef long long LL; typedef unsigned long long UL; typedef unsigned int UI; template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; } template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; } const int N = 2e5+1000, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f; int n, k; LL o[N], a[N]; bool zero[N]; const int inf = 4e9; int solve() { int ret = 0; for (int i = n + 100; i >= 1; --i) { if (abs(a[i] - o[i]) > inf)return ret; if (abs(a[i] - o[i]) <= k && zero[i - 1] == 0 && (i <= n || i == n + 1 && abs(a[i] - o[i]) != 0))++ret; a[i - 1] += a[i] * 2; } return ret; } int main() { while (~scanf("%d%d", &n,&k)) { MS(o, 0); for (int i = 1; i <= n + 1; ++i)scanf("%lld", &o[i]); MC(a, o); for (int i = 1; i <= n + 100; ++i) { a[i + 1] += a[i] / 2; a[i] %= 2; zero[i] = zero[i - 1] | a[i]; } printf("%d\n", solve()); } return 0; } /* 【题意】 有一个多项式P,这个多项式被定义为合法的,即—— 1,其最高次项为n(2e5),不可变为0 2,每项系数绝对值均不可超过k 3,各项系数均为整数 现在P(2)!=0,我们想只改变一个系数,同时使得—— 1,P(2)=0 2,a[n]!=0(即不能使最高项的系数为0) 【类型】 二进制思想 【分析】 多项式P(2),每一项都是——系数*2^k的形式 我们发现,如果改变某一项,要使得这一项之前的和恰好为0 而这个要如何查证呢? 我们不妨把这个多项式的系数转化为严格的二进制表示法。 这样,我们就知道从低位开始向上数,第一个低位之和不为0的位置是哪里了。 比如a[1~p-1]==0都成立,而a[p]==1,那么我们改变多项式的系数,必然只能改变[1,p]中的某一位。 而我们要改变使得这个多项式为0. 我们还要从高位向低位滚动。 把高位的二进制base转化到低位,如果这个低位以下全部为0,我们就可以计算低位消除高位需要把数改变多少。 如果变成的数的绝对值符合要求,就达标。 然而要注意—— 我们低位的数对高位的消除作用是有限的,[1~p-1]数全部加起来,对[p]的消除作用不过也就1e9而已。 所以,如果目前消除的成本过高,超过2e9,传递下去也必然GG,我们就不再传递了 否则的话—— 1,消除改变后的数在[-k,k]之间 2,如果是改变最高位的话,改变后的数不能为0 3,低位数之和为0 【时间复杂度&&优化】 O(2n) 【数据】 1 1000 16 8 */