Given an unsorted array, find the maximum difference between the successive elements in its sorted form.
Try to solve it in linear time/space.
Return 0 if the array contains less than 2 elements.
You may assume all elements in the array are non-negative integers and fit in the 32-bit signed integer range.
Credits:
Special thanks to @porker2008 for adding this problem and creating all test cases.
Discuss
给定一个未排序的数组,找出其排序后的序列中两个相邻元素之间的最大差值。
最好在线性时间、线性空间复杂度内完成。
如果数组少于2个元素,返回0
可以假设数组中的所有元素均为非负整数,并且在32位带符号整数的范围以内。
基数排序(radix sort)/桶排序(bucket sort)
假设有N个元素A到B。
那么最大差值不会大于ceiling[(B - A) / (N - 1)]
令bucket(桶)的大小len = ceiling[(B - A) / (N - 1)],则最多会有(B - A) / len + 1个桶
对于数组中的任意整数K,很容易通过算式loc = (K - A) / len找出其桶的位置,然后维护每一个桶的最大值和最小值
由于同一个桶内的元素之间的差值至多为len - 1,因此最终答案不会从同一个桶中选择。
对于每一个非空的桶p,找出下一个非空的桶q,则q.min - p.max可能就是备选答案。返回所有这些可能值中的最大值。
class Solution { public: int maximumGap(vector<int> &num) { if (num.empty() || num.size() < 2) return 0; int Max = *max_element(num.begin(), num.end()); int Min = *min_element(num.begin(), num.end()); int gap = (int)ceil((double)(Max-Min)/(num.size() - 1)); int bucketNum = (int) ceil((double)(Max-Min)/gap); vector<int> bucketsMin(bucketNum, INT_MAX); vector<int> bucketsMax(bucketNum, INT_MIN); for (int i = 0; i < num.size(); i++) { if (num[i] == Max || num[i] == Min) continue; int idx = (num[i] - Min) / gap; bucketsMin[idx] = min(bucketsMin[idx], num[i]); bucketsMax[idx] = max(bucketsMax[idx], num[i]); } int ans = INT_MIN; int previous = Min; for (int i = 0; i < bucketNum; i++) { if (bucketsMin[i] == INT_MAX || bucketsMax[i] == INT_MIN) continue; ans = max(ans, bucketsMin[i] - previous); previous = bucketsMax[i]; } ans = max(ans, Max - previous); return ans; } };