两只青蛙跳了t 步
A的坐标 x+mt
B的坐标 y+nt
相遇的充要条件:
x+mt-y-nt= pL ( p是整数) 即
(n-m)*t+Lp=x-y (L>0)
问题转化为:
求满足 (m-n)*t+Lp=(y-x) 的最小 t (t>0)
即求 一次同余方程
(m-n)*t = (y-x) (mod L) 的最小正整数解
#include<cstdio>
long long mod(long long a,long long b)
{
return (a % b + b) % b;
}
struct triple
{
long long d,x,y;
};
long long Euclid(long long a,long long b)
{
if(b == 0)
return a;
else
return Euclid(b,mod(a,b));
}
triple Extended_Euclid(long long a,long long b)
{
triple result;
if(b == 0)
{
result.d = a;
result.x = 1;
result.y = 0;
}
else
{
triple ee = Extended_Euclid(b,mod(a,b));
result.d = ee.d;
result.x = ee.y;
result.y = ee.x - (a/b)*ee.y;
}
return result;
}
long long MLES(long long a,long long b,long long n)
{
triple ee = Extended_Euclid(a,n);
if(mod(b,ee.d) == 0)
return mod((ee.x * (b / ee.d)),n/ee.d);
else
return -1;
}
int main()
{
long long x, y, m, n, l;
while(scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&l) != EOF){
long long mles;
mles = MLES(m-n,y-x,l);
if(mles < 0)
printf("Impossible/n");
else
printf("%I64d/n",mles);
}
return 0;
}