#include<iostream> using namespace std; const double epx=1e-10; struct Point { double x; double y; }; //求解二元一次方程 Point solve(double a1,double b1,double c1,double a2,double b2,double c2) { Point p; p.x=(c1*b2-c2*b1)/(a2*b1-a1*b2); p.y=(a2*c1-a1*c2)/(a1*b2-a2*b1); return p; } //p1p3,p1p2的叉积 double direction(Point p1,Point p2,Point p3) { return (p3.x-p1.x)*(p2.y-p1.y)-(p2.x-p1.x)*(p3.y-p1.y); } //判断两直线的关系 /* 在这里有三种关系:1共线 2平行 3相交 1 共线可通过叉积来判断 2 平行通过向量来判断 3 通了上面2种情况的其他情况 求交点可通过叉积及解二元一次方程来求解 */ int N; Point p1,p2,p3,p4; Point p0;//交点 double a1,b1,c1,a2,b2,c2; int main() { scanf("%d",&N); int i; printf("INTERSECTING LINES OUTPUT\n"); for(i=0;i<N;++i) { scanf("%lf%lf%lf%lf%lf%lf%lf%lf", &p1.x, &p1.y, &p2.x, &p2.y, &p3.x, &p3.y, &p4.x, &p4.y); if(direction(p3,p4,p1)==0 && direction(p3,p4,p2)==0)//共线 printf("LINE\n"); else { if( ((p1.x-p2.x)*(p3.y-p4.y)-(p1.y-p2.y)*(p3.x-p4.x))==0 )//平行 printf("NONE\n"); else { a1=p1.y-p2.y;b1=p2.x-p1.x;c1=p1.x*p2.y-p2.x*p1.y; a2=p3.y-p4.y;b2=p4.x-p3.x;c2=p3.x*p4.y-p4.x*p3.y; p0=solve(a1,b1,c1,a2,b2,c2); printf("POINT %.2f %.2f\n",p0.x,p0.y); } } } printf("END OF OUTPUT\n"); return 0; }