给SQLite数据库加密

前面所说的内容网上已经有很多资料,虽然比较零散,但是花点时间也还是可以找到的。现在要说的这个——数据库加密,资料就很难找。也可能是我操作水平不够,找不到对应资料。但不管这样,我还是通过网上能找到的很有限的资料,探索出了给sqlite数据库加密的完整步骤。

这里要提一下,虽然 sqlite 很好用,速度快、体积小巧。但是它保存的文件却是明文的。若不信可以用 NotePad 打开数据库文件瞧瞧,里面 insert 的内容几乎一览无余。这样赤裸裸的展现自己,可不是我们的初衷。当然,如果你在嵌入式系统、智能手机上使用 sqlite,最好是不加密,因为这些系统运算能力有限,你做为一个新功能提供者,不能把用户有限的运算能力全部花掉。

Sqlite为了速度而诞生。因此Sqlite本身不对数据库加密,要知道,如果你选择标准AES算法加密,那么一定有接近50%的时间消耗在加解密算法上,甚至更多(性能主要取决于你算法编写水平以及你是否能使用cpu提供的底层运算能力,比如MMX或sse系列指令可以大幅度提升运算速度)。

Sqlite免费版本是不提供加密功能的,当然你也可以选择他们的收费版本,那你得支付2000块钱,而且是USD。我这里也不是说支付钱不好,如果只为了数据库加密就去支付2000块,我觉得划不来。因为下面我将要告诉你如何为免费的Sqlite扩展出加密模块——自己动手扩展,这是Sqlite允许,也是它提倡的。

那么,就让我们一起开始为 sqlite3.c 文件扩展出加密模块。

 

i.1         必要的宏

通过阅读 Sqlite 代码(当然没有全部阅读完,6万多行代码,没有一行是我习惯的风格,我可没那么多眼神去看),我搞清楚了两件事:

Sqlite是支持加密扩展的;

需要 #define 一个宏才能使用加密扩展。

这个宏就是 SQLITE_HAS_CODEC。

你在代码最前面(也可以在 sqlite3.h 文件第一行)定义:

#ifndef SQLITE_HAS_CODEC

#define SQLITE_HAS_CODEC

#endif

 

如果你在代码里定义了此宏,但是还能够正常编译,那么应该是操作没有成功。因为你应该会被编译器提示有一些函数无法链接才对。如果你用的是 VC 2003,你可以在“解决方案”里右键点击你的工程,然后选“属性”,找到“C/C++”,再找到“命令行”,在里面手工添加“/D "SQLITE_HAS_CODEC"”。

定义了这个宏,一些被 Sqlite 故意屏蔽掉的代码就被使用了。这些代码就是加解密的接口。

尝试编译,vc会提示你有一些函数无法链接,因为找不到他们的实现。

如果你也用的是VC2003,那么会得到下面的提示:

error LNK2019:无法解析的外部符号 _sqlite3CodecGetKey,该符号在函数 _attachFunc 中被引用

error LNK2019:无法解析的外部符号 _sqlite3CodecAttach,该符号在函数_attachFunc 中被引用

error LNK2019:无法解析的外部符号 _sqlite3_activate_see,该符号在函数 _sqlite3Pragma 中被引用

error LNK2019:无法解析的外部符号 _sqlite3_key,该符号在函数 _sqlite3Pragma 中被引用

fatal error LNK1120:4个无法解析的外部命令

 

这是正常的,因为Sqlite只留了接口而已,并没有给出实现。

下面就让我来实现这些接口。

 

i.2         自己实现加解密接口函数

如果真要我从一份 www.sqlite.org网上down下来的 sqlite3.c 文件,直接摸索出这些接口的实现,我认为我还没有这个能力。

好在网上还有一些代码已经实现了这个功能。通过参照他们的代码以及不断编译中vc给出的错误提示,最终我把整个接口整理出来。

实现这些预留接口不是那么容易,要重头说一次怎么回事很困难。我把代码都写好了,直接把他们按我下面的说明拷贝到 sqlite3.c文件对应地方即可。我在下面也提供了sqlite3.c 文件,可以直接参考或取下来使用。

 

这里要说一点的是,我另外新建了两个文件:crypt.c和crypt.h。

其中crypt.h如此定义:

#ifndef DCG_SQLITE_CRYPT_FUNC_

#define DCG_SQLITE_CRYPT_FUNC_

/***********

董淳光写的SQLITE加密关键函数库

***********/

 

/***********

关键加密函数

***********/

int My_Encrypt_Func(unsignedchar * pData,unsignedint data_len,constchar * key,unsignedint len_of_key );

 

/***********

关键解密函数

***********/

int My_DeEncrypt_Func(unsignedchar * pData,unsignedint data_len,constchar * key,unsignedint len_of_key );

 

#endif

 

 

其中的 crypt.c 如此定义:

#include "./crypt.h"

#include "memory.h"

/***********

关键加密函数

***********/

int My_Encrypt_Func(unsignedchar * pData,unsignedint data_len,constchar * key,unsignedint len_of_key )

{

return 0;

}

 

/***********

关键解密函数

***********/

int My_DeEncrypt_Func(unsignedchar * pData,unsignedint data_len,constchar * key,unsignedint len_of_key )

{

return 0;

}

 

这个文件很容易看,就两函数,一个加密一个解密。传进来的参数分别是待处理的数据、数据长度、密钥、密钥长度。

处理时直接把结果作用于 pData 指针指向的内容。

你需要定义自己的加解密过程,就改动这两个函数,其它部分不用动。扩展起来很简单。

这里有个特点,data_len 一般总是 1024 字节。正因为如此,你可以在你的算法里使用一些特定长度的加密算法,比如AES要求被加密数据一定是128位(16字节)长。这个1024不是碰巧,而是 Sqlite 的页定义是1024字节,在sqlite3.c文件里有定义:

# define SQLITE_DEFAULT_PAGE_SIZE1024

你可以改动这个值,不过还是建议没有必要不要去改它。

 

上面写了两个扩展函数,如何把扩展函数跟 Sqlite 挂接起来,这个过程说起来比较麻烦。我直接贴代码。

分3个步骤。

首先,在 sqlite3.c 文件顶部,添加下面内容:

 

#ifdef SQLITE_HAS_CODEC

#include "./crypt.h"

/***********

用于在sqlite3最后关闭时释放一些内存

***********/

void sqlite3pager_free_codecarg(void *pArg);

#endif

这个函数之所以要在 sqlite3.c 开头声明,是因为下面在 sqlite3.c 里面某些函数里要插入这个函数调用。所以要提前声明。

 

其次,在sqlite3.c文件里搜索“sqlite3PagerClose”函数,要找到它的实现代码(而不是声明代码)。

实现代码里一开始是:

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT

  /* A malloc() cannotfail in sqlite3ThreadData() as one or more calls to

  ** malloc() must have already been made bythis thread before it gets

  ** to this point. This means the ThreadDatamust have been allocated already

  ** so that ThreadData.nAlloc can be set.

  */

  ThreadData *pTsd = sqlite3ThreadData();

  assert( pPager );

  assert( pTsd && pTsd->nAlloc );

#endif

 

需要在这部分后面紧接着插入:

 

#ifdef SQLITE_HAS_CODEC

 sqlite3pager_free_codecarg(pPager->pCodecArg);

#endif

 

这里要注意,sqlite3PagerClose 函数大概也是 3.3.17版本左右才改名的,以前版本里是叫 “sqlite3pager_close”。因此你在老版本sqlite代码里搜索“sqlite3PagerClose”是搜不到的。

类似的还有“sqlite3pager_get”、“sqlite3pager_unref”、“sqlite3pager_write”、“sqlite3pager_pagecount”等都是老版本函数,它们在 pager.h 文件里定义。新版本对应函数是在 sqlite3.h 里定义(因为都合并到 sqlite3.c和sqlite3.h两文件了)。所以,如果你在使用老版本的sqlite,先看看 pager.h 文件,这些函数不是消失了,也不是新蹦出来的,而是老版本函数改名得到的。

 

最后,往sqlite3.c 文件下找。找到最后一行:

 

/************** End of main.c************************************************/

 

在这一行后面,接上本文最下面的代码段。

这些代码很长,我不再解释,直接接上去就得了。

唯一要提的是 DeriveKey 函数。这个函数是对密钥的扩展。比如,你要求密钥是128位,即是16字节,但是如果用户只输入 1个字节呢?2个字节呢?或输入50个字节呢?你得对密钥进行扩展,使之符合16字节的要求。

DeriveKey 函数就是做这个扩展的。有人把接收到的密钥求md5,这也是一个办法,因为md5运算结果固定16字节,不论你有多少字符,最后就是16字节。这是md5算法的特点。但是我不想用md5,因为还得为它添加包含一些 md5 的.c或.cpp文件。我不想这么做。我自己写了一个算法来扩展密钥,很简单的算法。当然,你也可以使用你的扩展方法,也而可以使用 md5 算法。只要修改 DeriveKey 函数就可以了。

在 DeriveKey 函数里,只管申请空间构造所需要的密钥,不需要释放,因为在另一个函数里有释放过程,而那个函数会在数据库关闭时被调用。参考我的 DeriveKey 函数来申请内存。

 

这里我给出我已经修改好的 sqlite3.c 和 sqlite3.h 文件。

如果太懒,就直接使用这两个文件,编译肯定能通过,运行也正常。当然,你必须按我前面提的,新建 crypt.h和 crypt.c 文件,而且函数要按我前面定义的要求来做。

 

i.3         加密使用方法:

现在,你代码已经有了加密功能。

你要把加密功能给用上,除了改 sqlite3.c 文件、给你工程添加 SQLITE_HAS_CODEC 宏,还得修改你的数据库调用函数。

前面提到过,要开始一个数据库操作,必须先 sqlite3_open

加解密过程就在 sqlite3_open 后面操作。

假设你已经 sqlite3_open 成功了,紧接着写下面的代码:

      int i;

//添加、使用密码      

      i =  sqlite3_key(db, "dcg", 3 );

      //修改密码

      i =  sqlite3_rekey( db, "dcg", 0 );

 

用sqlite3_key 函数来提交密码。

第1个参数是 sqlite3 *类型变量,代表着用 sqlite3_open 打开的数据库(或新建数据库)。

第2个参数是密钥。

第3个参数是密钥长度。

用sqlite3_rekey 来修改密码。参数含义同 sqlite3_key

 

实际上,你可以在sqlite3_open函数之后,到 sqlite3_close 函数之前任意位置调用 sqlite3_key 来设置密码。

但是如果你没有设置密码,而数据库之前是有密码的,那么你做任何操作都会得到一个返回值:SQLITE_NOTADB,并且得到错误提示:“file is encrypted or is not a database”。

只有当你用 sqlite3_key 设置了正确的密码,数据库才会正常工作。

如果你要修改密码,前提是你必须先 sqlite3_open 打开数据库成功,然后 sqlite3_key 设置密钥成功,之后才能用 sqlite3_rekey 来修改密码。

如果数据库有密码,但你没有用 sqlite3_key 设置密码,那么当你尝试用 sqlite3_rekey 来修改密码时会得到SQLITE_NOTADB返回值。

如果你需要清空密码,可以使用:

//修改密码

      i =  sqlite3_rekey( db, NULL, 0 );

来完成密码清空功能。

 

 

i.4        sqlite3.c最后添加代码段

 

 

/***

董淳光定义的加密函数

***/

#ifdef SQLITE_HAS_CODEC

 

/***

加密结构

***/

#define CRYPT_OFFSET 8

typedefstruct _CryptBlock

{

BYTE*    ReadKey;     // 读数据库和写入事务的密钥

BYTE*    WriteKey;    // 写入数据库的密钥

int      PageSize;   //页的大小

BYTE*    Data;

} CryptBlock,*LPCryptBlock;

 

#ifndef DB_KEY_LENGTH_BYTE        /*密钥长度*/

#define DB_KEY_LENGTH_BYTE   16  /*密钥长度*/

#endif

 

#ifndef DB_KEY_PADDING            /*密钥位数不足时补充的字符*/

#define DB_KEY_PADDING       0x33 /*密钥位数不足时补充的字符*/

#endif

/*** 下面是编译时提示缺少的函数 ***/

 

/** 这个函数不需要做任何处理,获取密钥的部分在下面 DeriveKey函数里实现 **/

void sqlite3CodecGetKey(sqlite3* db,int nDB,void** Key, int* nKey)

{

return ;

}

 

/*sqlite sqlite3_key_interop调用,附加密钥到数据库.*/

int sqlite3CodecAttach(sqlite3 *db,int nDb,constvoid *pKey,int nKeyLen);

 

/**

这个函数好像是sqlite 3.3.17前不久才加的,以前版本的sqlite里没有看到这个函数

这个函数我还没有搞清楚是做什么的,它里面什么都不做直接返回,对加解密没有影响

**/

void sqlite3_activate_see(constchar* right )

{   

return;

}

 

int sqlite3_key(sqlite3 *db,constvoid *pKey,int nKey);

 

int sqlite3_rekey(sqlite3 *db,constvoid *pKey,int nKey);

 

 

 

/***

下面是上面的函数的辅助处理函数

***/

 

// 从用户提供的缓冲区中得到一个加密密钥

// 用户提供的密钥可能位数上满足不了要求,使用这个函数来完成密钥扩展

staticunsignedchar * DeriveKey(constvoid *pKey, int nKeyLen);

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsignedchar* hKey, Pager *pager, LPCryptBlock pExisting);

//加密/解密函数,pager调用

void * sqlite3Codec(void *pArg,unsignedchar *data, Pgno nPageNum,int nMode);

//设置密码函数

int__stdcall sqlite3_key_interop(sqlite3 *db,constvoid *pKey,int nKeySize);

// 修改密码函数

int__stdcall sqlite3_rekey_interop(sqlite3 *db,constvoid *pKey,int nKeySize);

//销毁一个加密块及相关的缓冲区,密钥.

staticvoid DestroyCryptBlock(LPCryptBlock pBlock);

staticvoid * sqlite3pager_get_codecarg(Pager *pPager);

void sqlite3pager_set_codec(Pager *pPager,void *(*xCodec)(void*,void*,Pgno,int),void *pCodecArg    );

 

 

 

//加密/解密函数,pager调用

void * sqlite3Codec(void *pArg,unsignedchar *data, Pgno nPageNum,int nMode)

{

LPCryptBlock pBlock = (LPCryptBlock)pArg;

unsignedint dwPageSize = 0;

 

if (!pBlock)return data;

 

// 确保pager的页长度和加密块的页长度相等.如果改变,就需要调整.

if (nMode != 2)

{

     PgHdr *pageHeader;

     pageHeader = DATA_TO_PGHDR(data);

     if (pageHeader->pPager->pageSize !=pBlock->PageSize)

     {

          CreateCryptBlock(0,pageHeader->pPager, pBlock);

     }

}

 

switch(nMode)

{

case 0:// Undo a "case7" journal file encryption

case 2://重载一个页

case 3://载入一个页

     if (!pBlock->ReadKey) break;

 

 

     dwPageSize = pBlock->PageSize;

     My_DeEncrypt_Func(data, dwPageSize,pBlock->ReadKey, DB_KEY_LENGTH_BYTE ); /*调用我的解密函数*/

 

     break;

case 6://加密一个主数据库文件的页

     if (!pBlock->WriteKey) break;

 

     memcpy(pBlock->Data + CRYPT_OFFSET,data, pBlock->PageSize);

     data = pBlock->Data + CRYPT_OFFSET;

 

 

     dwPageSize = pBlock->PageSize;

     My_Encrypt_Func(data , dwPageSize,pBlock->WriteKey, DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

     break;

case 7://加密事务文件的页

     /*在正常环境下,读密钥和写密钥相同.当数据库是被重新加密的,读密钥和写密钥未必相同.

     回滚事务必要用数据库文件的原始密钥写入.因此,当一次回滚被写入,总是用数据库的读密钥,

     这是为了保证与读取原始数据的密钥相同.

     */

     if (!pBlock->ReadKey) break;

 

     memcpy(pBlock->Data + CRYPT_OFFSET,data, pBlock->PageSize);

     data = pBlock->Data + CRYPT_OFFSET;

 

 

     dwPageSize = pBlock->PageSize;

     My_Encrypt_Func( data, dwPageSize,pBlock->ReadKey, DB_KEY_LENGTH_BYTE ); /*调用我的加密函数*/

     break;

}

 

return data;

}

 

 

 

 

//销毁一个加密块及相关的缓冲区,密钥.

staticvoid DestroyCryptBlock(LPCryptBlock pBlock)

{

//销毁读密钥.

if (pBlock->ReadKey){

     sqliteFree(pBlock->ReadKey);

}

 

//如果写密钥存在并且不等于读密钥,也销毁.

if (pBlock->WriteKey && pBlock->WriteKey !=pBlock->ReadKey){

     sqliteFree(pBlock->WriteKey);

}

 

if(pBlock->Data){

     sqliteFree(pBlock->Data);

}

 

//释放加密块.

sqliteFree(pBlock);

}

 

staticvoid * sqlite3pager_get_codecarg(Pager *pPager)

{

return (pPager->xCodec) ? pPager->pCodecArg: NULL;

}

// 从用户提供的缓冲区中得到一个加密密钥

staticunsignedchar * DeriveKey(constvoid *pKey, int nKeyLen)

{

unsignedcharhKey = NULL;

int j;

 

if( pKey == NULL || nKeyLen == 0 )

{

     return NULL;

}

 

hKey = sqliteMalloc( DB_KEY_LENGTH_BYTE + 1 );

if( hKey == NULL )

{

     return NULL;

}

hKey[ DB_KEY_LENGTH_BYTE ] = 0;

if( nKeyLen < DB_KEY_LENGTH_BYTE )

{

     memcpy( hKey, pKey, nKeyLen ); //先拷贝得到密钥前面的部分

     j = DB_KEY_LENGTH_BYTE - nKeyLen;

     //补充密钥后面的部分

     memset( hKey + nKeyLen,  DB_KEY_PADDING,j  );

}

else

{ //密钥位数已经足够,直接把密钥取过来

     memcpy( hKey, pKey, DB_KEY_LENGTH_BYTE );

}

 

return hKey;

}

 

 

//创建或更新一个页的加密算法索引.此函数会申请缓冲区.

static LPCryptBlock CreateCryptBlock(unsignedchar* hKey, Pager *pager, LPCryptBlock pExisting)

{

LPCryptBlock pBlock;

 

if (!pExisting)//创建新加密块

{

     pBlock = sqliteMalloc(sizeof(CryptBlock));

     memset(pBlock, 0, sizeof(CryptBlock));

     pBlock->ReadKey = hKey;

     pBlock->WriteKey = hKey;

     pBlock->PageSize = pager->pageSize;

     pBlock->Data = (unsignedchar*)sqliteMalloc(pBlock->PageSize + CRYPT_OFFSET);

}

else//更新存在的加密块

{

     pBlock = pExisting;

     if ( pBlock->PageSize != pager->pageSize &&!pBlock->Data){

          sqliteFree(pBlock->Data);

          pBlock->PageSize =pager->pageSize;

          pBlock->Data = (unsignedchar*)sqliteMalloc(pBlock->PageSize+ CRYPT_OFFSET);

     }

}

 

 

memset(pBlock->Data, 0, pBlock->PageSize+ CRYPT_OFFSET);

 

return pBlock;

}

 

/*

** Set the codec forthis pager

*/

void sqlite3pager_set_codec(

                            Pager *pPager,

                            void *(*xCodec)(void*,void*,Pgno,int),

                            void *pCodecArg

                            )

{

pPager->xCodec = xCodec;

pPager->pCodecArg = pCodecArg;

}

int sqlite3_key(sqlite3 *db,constvoid *pKey,int nKey)

{

return sqlite3_key_interop(db, pKey, nKey);

}

 

int sqlite3_rekey(sqlite3 *db,constvoid *pKey,int nKey)

{

return sqlite3_rekey_interop(db, pKey, nKey);

}

 

/*sqlite sqlite3_key_interop调用,附加密钥到数据库.*/

int sqlite3CodecAttach(sqlite3 *db,int nDb,constvoid *pKey,int nKeyLen)

{

    int rc = SQLITE_ERROR;

    unsignedchar* hKey = 0;

 

    //如果没有指定密匙,可能标识用了主数据库的加密或没加密.

    if (!pKey || !nKeyLen)

    {

        if (!nDb)

        {

            return SQLITE_OK; //主数据库,没有指定密钥所以没有加密.

        }

        else//附加数据库,使用主数据库的密钥.

        {

            //获取主数据库的加密块并复制密钥给附加数据库使用

            LPCryptBlock pBlock =(LPCryptBlock)sqlite3pager_get_codecarg(sqlite3BtreePager(db->aDb[0].pBt));

 

            if (!pBlock) return SQLITE_OK;//主数据库没有加密

            if (!pBlock->ReadKey)return SQLITE_OK;//没有加密

 

            memcpy(pBlock->ReadKey,&hKey, 16);

        }

    }

    else//用户提供了密码,从中创建密钥.

    {

        hKey = DeriveKey(pKey, nKeyLen);

    }

 

    //创建一个新的加密块,并将解码器指向新的附加数据库.

    if (hKey)

    {

        LPCryptBlock pBlock =CreateCryptBlock(hKey, sqlite3BtreePager(db->aDb[nDb].pBt), NULL);

       sqlite3pager_set_codec(sqlite3BtreePager(db->aDb[nDb].pBt),sqlite3Codec, pBlock);

        rc = SQLITE_OK;

    }

    return rc;

}

 

// Changes the encryptionkey for an existing database.

int__stdcall sqlite3_rekey_interop(sqlite3 *db,constvoid *pKey,int nKeySize)

{

Btree *pbt = db->aDb[0].pBt;

Pager *p = sqlite3BtreePager(pbt);

LPCryptBlock pBlock =(LPCryptBlock)sqlite3pager_get_codecarg(p);

unsignedchar * hKey = DeriveKey(pKey, nKeySize);

int rc = SQLITE_ERROR;

 

 

if (!pBlock && !hKey)return SQLITE_OK;

 

//重新加密一个数据库,改变pager的写密钥,读密钥依旧保留.

if (!pBlock)//加密一个未加密的数据库

{

     pBlock = CreateCryptBlock(hKey, p, NULL);

     pBlock->ReadKey = 0; // 原始数据库未加密

     sqlite3pager_set_codec(sqlite3BtreePager(pbt),sqlite3Codec, pBlock);

}

else//改变已加密数据库的写密钥

{

     pBlock->WriteKey = hKey;

}

 

// 开始一个事务

rc = sqlite3BtreeBeginTrans(pbt, 1);

 

if (!rc)

{

     // 用新密钥重写所有的页到数据库。

     Pgno nPage = sqlite3PagerPagecount(p);

     Pgno nSkip = PAGER_MJ_PGNO(p);

     void *pPage;

     Pgno n;

 

     for(n = 1; rc == SQLITE_OK && n <= nPage; n ++)

     {

          if (n == nSkip) continue;

          rc = sqlite3PagerGet(p, n,&pPage);

          if(!rc)

          {

              rc = sqlite3PagerWrite(pPage);

              sqlite3PagerUnref(pPage);

          }

     }

}

 

// 如果成功,提交事务。

if (!rc)

{

     rc = sqlite3BtreeCommit(pbt);

}

 

// 如果失败,回滚。

if (rc)

{

     sqlite3BtreeRollback(pbt);

}

 

 

 

// 如果成功,销毁先前的读密钥。并使读密钥等于当前的写密钥。

if (!rc)

{

     if (pBlock->ReadKey)

     {

          sqliteFree(pBlock->ReadKey);

     }

     pBlock->ReadKey = pBlock->WriteKey;

}

else//如果失败,销毁当前的写密钥,并恢复为当前的读密钥。

{

     if (pBlock->WriteKey)

     {

          sqliteFree(pBlock->WriteKey);

     }

     pBlock->WriteKey = pBlock->ReadKey;

}

 

 

 

// 如果读密钥和写密钥皆为空,就不需要再对页进行编解码。

// 销毁加密块并移除页的编解码器

if (!pBlock->ReadKey && !pBlock->WriteKey)

{

     sqlite3pager_set_codec(p, NULL, NULL);

     DestroyCryptBlock(pBlock);

}

 

return rc;

}

 

 

 

 

 

 

/***

下面是加密函数的主体

***/

int__stdcall sqlite3_key_interop(sqlite3 *db,constvoid *pKey,int nKeySize)

{

  return sqlite3CodecAttach(db, 0, pKey, nKeySize);

}

 

 

// 释放与一个页相关的加密块

void sqlite3pager_free_codecarg(void *pArg)

{

if (pArg)

     DestroyCryptBlock((LPCryptBlock)pArg);

}

 

#endif//#ifdefSQLITE_HAS_CODEC

 

你可能感兴趣的:(给SQLite数据库加密)