【机器学习系列】皮尔逊相关系数

欧几里德距离

欧几里得度量定义欧几里得空间中点 x = (x1,...,xn) 和 y = (y1,...,yn) 之间的距离为

clip_image001


但是当评价结果中,评价者的评价相对于平均水平偏离很大的时候欧几里德距离不能很好的揭示出真实的相似度.还有一种评价方法就是使用皮尔逊相关系数,它可以完成"夸大值纠偏":


皮尔逊相关度系数

两个变量之间的相关系数越高,从一个变量去预测另一个变量的精确度就越高,这是因为相关系数越高,就意味着这两个变量的共变部分越多,所以从其中一个变量的变化就可越多地获知另一个变量的变化。如果两个变量之间的相关系数为1或-1,那么你完全可由变量X去获知变量Y的值。

·         当相关系数为0时,X和Y两变量无关系。

·         当X的值增大,Y也增大,正相关关系,相关系数在0.00与1.00之间

·         当X的值减小,Y也减小,正相关关系,相关系数在0.00与1.00之间

·         当X的值增大,Y减小,负相关关系,相关系数在-1.00与0.00之间

          当X的值减小,Y增大,负相关关系,相关系数在-1.00与0.00之间

相关系数的绝对值越大,相关性越强,相关系数越接近于1和-1,相关度越强,相关系数越接近于0,相关度越弱。

clip_image003


转载自:http://blog.csdn.net/zimohuakai/article/details/6578791


参考

1.维基百科-皮尔逊系数
http://zh.wikipedia.org/wiki/%E7%9A%AE%E5%B0%94%E9%80%8A%E7%A7%AF%E7%9F%A9%E7%9B%B8%E5%85%B3%E7%B3%BB%E6%95%B0

你可能感兴趣的:(机器学习,皮尔逊相关系数)