poj1971 Parallelogram Counting

题意:给n个点,问能组成四边形平行四边形的个数(有可能有三点共线)

思路:组成平行四边形的判定条件之中有一个是,对角线互相平分,即中点相同,所以直接n^2算出所有中点然后排序求就好了


#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;

struct Node
{
	int x,y;
}mid[maxn*maxn],nodes[maxn];
bool cmp(Node a,Node b)
{
	if (a.x==b.x)
		return a.y<b.y;
	return a.x<b.x;
}
int main()
{
    int T;
	scanf("%d",&T);
	int cas = 1;
	while (T--)
	{
		int n;
		scanf("%d",&n);
        for (int i = 0;i<n;i++)
			scanf("%d%d",&nodes[i].x,&nodes[i].y);
		int pos = 0;
        for (int i = 0;i<n-1;i++)
			for (int j = i+1;j<n;j++)
			{
				mid[pos].x=nodes[i].x+nodes[j].x;
				mid[pos++].y=nodes[i].y+nodes[j].y;
			}
        sort(mid,mid+pos,cmp);
		int next = 0;
		int sum = 1;
		int count = 0;
		for (int i = 1;i<pos;i++)
		{
			if (mid[i].x==mid[next].x && mid[i].y==mid[next].y)
			    sum++;
			else
			{
				next = i;
				count+=sum*(sum-1)/2;
				sum=1;
			}
		}
		printf("Case %d: %d\n",cas++,count);
	}
}





Description

There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.

Input

Input starts with an integer T (≤ 15), denoting the number of test cases.

The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.

Output

For each case, print the case number and the number of parallelograms that can be formed.

Sample Input

2

6

0 0

2 0

4 0

1 1

3 1

5 1

7

-2 -1

8 9

5 7

1 1

4 8

2 0

9 8

Sample Output

Case 1: 5

Case 2: 6



你可能感兴趣的:(poj1971 Parallelogram Counting)