题意:给n个点,问能组成四边形平行四边形的个数(有可能有三点共线)
思路:组成平行四边形的判定条件之中有一个是,对角线互相平分,即中点相同,所以直接n^2算出所有中点然后排序求就好了
#include<bits/stdc++.h> using namespace std; const int maxn = 1005; struct Node { int x,y; }mid[maxn*maxn],nodes[maxn]; bool cmp(Node a,Node b) { if (a.x==b.x) return a.y<b.y; return a.x<b.x; } int main() { int T; scanf("%d",&T); int cas = 1; while (T--) { int n; scanf("%d",&n); for (int i = 0;i<n;i++) scanf("%d%d",&nodes[i].x,&nodes[i].y); int pos = 0; for (int i = 0;i<n-1;i++) for (int j = i+1;j<n;j++) { mid[pos].x=nodes[i].x+nodes[j].x; mid[pos++].y=nodes[i].y+nodes[j].y; } sort(mid,mid+pos,cmp); int next = 0; int sum = 1; int count = 0; for (int i = 1;i<pos;i++) { if (mid[i].x==mid[next].x && mid[i].y==mid[next].y) sum++; else { next = i; count+=sum*(sum-1)/2; sum=1; } } printf("Case %d: %d\n",cas++,count); } }
Description
There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.
Input
Input starts with an integer T (≤ 15), denoting the number of test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.
Output
For each case, print the case number and the number of parallelograms that can be formed.
Sample Input
2
6
0 0
2 0
4 0
1 1
3 1
5 1
7
-2 -1
8 9
5 7
1 1
4 8
2 0
9 8
Sample Output
Case 1: 5
Case 2: 6