POJ2533 Longest Ordered Subsequence

一.原题链接:http://poj.org/problem?id=2533

二,O(n^2)无优化DP

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;

const int MAX_SIZE =  50009;

int dp[MAX_SIZE], arr[MAX_SIZE];
int n, m;

int main()
{
    //freopen("in.txt", "r", stdin);
    int N, i, j, ntemp;

    cin>>N;
    for(i = 0; i < N; i++){
        scanf("%d", &arr[i]);
        dp[i] = 1;
    }

    for(i = 1; i < N; i++){
        for(j = 0; j < i; j++){
            if(arr[j] < arr[i])
            dp[i] = max(dp[j] + 1, dp[i]);
        }
    }

    ntemp = -1;
    for(i = 0; i < N; i++)
        ntemp = max(dp[i], ntemp);

    cout<<ntemp;
    return 0;
}

O(nlgn)DP+二分查找

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>

using namespace std;

const int MAX_SIZE =  50009;
const int INF = 1<<29;

//dp[i]表示最大递增序列长度为i的最大元素;
//如果有相同长度的最大递增序列,取最小的最大元素;
int dp[MAX_SIZE], arr[MAX_SIZE];

int main()
{
    //freopen("in1.txt", "r", stdin);
    int num, i, j, res, l, r, m;

    scanf("%d", &num);
    for(i = 1; i <= num; i++)
        scanf("%d", &arr[i]);

    dp[0] = -INF;
    dp[1] = arr[1];
    res = 1;
    for(i = 2; i <= num; i++){
        l = 1; r = res;
        while(l <= r && r >= 1){
            m = (l + r)/2;
            if(dp[m] < arr[i])
                l = m + 1;
            else
                r = m - 1;
        }
        dp[l] = arr[i];
        if(res < l)
            res++;
    }

    printf("%d\n", res);
}


你可能感兴趣的:(POJ2533 Longest Ordered Subsequence)