题意:
Bell(n)是基数为n的集合的划分方法数。例如n = 3
{1, 2, 3}
{1} {2, 3}
{1, 2} {3}
{1, 3} {2}
{1} {2} {3}
所以Bell(3) = 5
给你一个n,求Bell(n) % 95041567的值
解题思路:
首先知道Bell(n) = S(n, 1) + S(n, 2) + ... S(n, n),S为第二类斯特灵数
然后google到结论。。 :若p为任意质数,则有Bell(n+p) = Bell(n) + Bell(n+1) (mod p)。
然后可以发现95041567分解质因子后为 31 * 37 * 41 * 43 * 47...都为质数。
利用矩阵二分幂可以很容易得到 Bell(n) % p (p = 31, 37, 41, 43, 47)的各个值,现在问题就变成了这种模型
X = a[i] (mod m[i]) (m[i]为质数),求X mod (m[1]*m[2]...m[k])的值。也就是中国剩余定理的应用了。具体见代码
#include <stdio.h> int Md[] = {31, 37, 41, 43, 47}; int s[6][55][55], w[6][55]; // 第二类斯特灵数的预处理 void init() { for(int i = 0;i < 5;i ++) s[i][0][0] = 1; for(int i = 1;i <= 50; i++) { for(int j = 0;j < 5;j ++) s[j][i][1] = 1; for(int j = 1;j <= i; j++) { for(int k = 0;k < 5; k++) s[k][i][j] = (s[k][i-1][j-1] + j*s[k][i-1][j])%Md[k]; } for(int j = 0;j < 5; j++) { w[j][i] = 0; for(int k = 1;k <= i; k++) w[j][i] = (w[j][i] + s[j][i][k])%Md[j]; } } } // 矩阵二分幂 int pow_mod(int id, int n, int mod) { int a[55], aa[55], q[55][55], qq[55][55]; int sz = Md[id] + 1; for(int i = 1;i <= sz+1; i++) for(int j = 1;j <= sz+1; j++) q[i][j] = 0; for(int i = 1;i < sz; i++) q[i+1][i] = 1; q[2][sz] = q[3][sz] = 1; for(int i = 1;i <= sz; i++) a[i] = w[id][i]; if(n <= Md[id]) return a[n]; n --; while(n) { if(n & 1) { for(int i = 1;i <= sz; i++) { aa[i] = 0; for(int j = 1;j <= sz; j++) { aa[i] += a[j]*q[j][i]; } } for(int i = 1;i <= sz; i++) a[i] = aa[i]%mod; } for(int i = 1;i <= sz; i++) { for(int j = 1;j <= sz; j++) { qq[i][j] = 0; for(int k = 1;k <= sz; k++) { qq[i][j] += q[i][k]*q[k][j]; } qq[i][j] %= mod; } } for(int i = 1;i <= sz; i++) for(int j = 1;j <= sz; j++) q[i][j] = qq[i][j]; n /= 2; } return a[1]; } // 扩展欧几里得 int exgcd(int a, int b, int &x, int &y) { if(!b) { x = 1; y = 0; return a; } int ret = exgcd(b, a%b, y, x); y -= a/b*x; return ret; } // 中国剩余定理 int china(int n, int a[], int m[]) { int M = 1; for(int i = 0;i < n; i++) M *= m[i]; int ret = 0; for(int i = 0;i < n; i++) { int w = M/m[i], x, y; int d = exgcd(w, m[i], x, y); ret = (ret + x*w*a[i])%M; } return (ret + M)%M; } int x[55]; int main() { init(); int t, n; scanf("%d", &t); while(t--) { scanf("%d", &n); for(int i = 0;i < 5;i ++) { // 求Bell(n) % 各个质数的值 x[i] = pow_mod(i, n, Md[i]); } int ans = china(5, x, Md); printf("%d\n", ans); } }