这道题目的意思让我纠结啊,看了一下第一组数据,明明可以回到原点,而且时间为零,怎么会输出NO了?在网上找了找都说是判断是否有负环,可是为什么啊?
又看了看题目,关键的句子就是start at some field,travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .,在某点出发,通过一些道路和虫洞,能够回到出发点,且时间比出发时间小。最后我的理解是如果有负环存在,那就没有最短时间,一直无限的减小,那他肯定能在任何地方出发,回到出发点后时间比出发时间小。
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
NO YES
<span style="color:#000000;">#include<stdio.h> #include<string.h> #include<queue> #define M 0x3f3f3f3f using namespace std; int num; int n,m,w; int vist[510]; int d[510]; int head[510]; int count[510]; struct stu { int from,to,w,next; }; stu edge[6000]; void inin() { num=0; memset(head,-1,sizeof(head)); } void addedge(int a,int b,int c) { stu E={a,b,c,head[a]}; edge[num]=E; head[a]=num++; } bool SPFA(int sx) { memset(vist,0,sizeof(vist)); memset(d,0x3f,sizeof(d)); memset(count,0,sizeof(count)); d[sx]=0;vist[sx]=1;count[sx]=1; queue<int>q; q.push(sx); while(!q.empty()) { sx=q.front(); q.pop(); vist[sx]=0; for(int i=head[sx];i!=-1;i=edge[i].next) { int v=edge[i].to; if(d[v]>d[sx]+edge[i].w) { d[v]=d[sx]+edge[i].w; if(!vist[v]) { vist[v]=1; count[v]++; if(count[v]>=n)//说明存在负环 return true; q.push(v); } } } } return false; } int main() { int t; int a,b,c; scanf("%d",&t); while(t--) { scanf("%d%d%d",&n,&m,&w); inin(); for(int i=1;i<=m;i++) { scanf("%d%d%d",&a,&b,&c); addedge(a,b,c); addedge(b,a,c); } for(int i=1;i<=w;i++) { scanf("%d%d%d",&a,&b,&c); c=-1*c; addedge(a,b,c); } if(SPFA(1)) printf("YES\n"); else printf("NO\n"); } return 0; }</span>