Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
我感觉是二分查找的应用
设插入的区间是newInterval 为[a,b]
通过二分查找找到最大的索引h,h是满足 intervals[h].start<=b;
通过二分查找找到最小的索引l,l是满足 intervals[l].end>=a;
如果l>h,在l前插入直接新区间即可;
如果l==h,将intervals[l]区间与newInterval合并即可;
如果l<h,需要将intervals[l]至intervals[h]区间与newInterval合并。
/** * Definition for an interval. * struct Interval { * int start; * int end; * Interval() : start(0), end(0) {} * Interval(int s, int e) : start(s), end(e) {} * }; */ class Solution { public: vector<Interval> insert(vector<Interval> &intervals, Interval newInterval) { int i=intervals.size(); //if(0==i) int high=i-1; int low=0; int h=-1; int l=i; while(low<=high){ int mid=(low+high)/2; if(intervals[mid].start>newInterval.end){ high=mid-1; }else { h=mid; low=mid+1; } } if(h==-1){ intervals.insert(intervals.begin(),newInterval); return intervals; } high=i-1; low=0; while(low<=high){ int mid=(low+high)/2; if(intervals[mid].end<newInterval.start){ low=mid+1; }else { l=mid; high=mid-1; } } if(l==i){ intervals.push_back(newInterval); return intervals; } if(l==h){ intervals[l].start=std::min(intervals[l].start,newInterval.start); intervals[l].end=std::max(intervals[l].end,newInterval.end); }else if(l>h){ intervals.insert(intervals.begin()+l,newInterval); }else { newInterval.start=std::min(intervals[l].start,newInterval.start); newInterval.end=std::max(intervals[h].end,newInterval.end); intervals.erase(intervals.begin()+l,intervals.begin()+h+1);//+1 intervals.insert(intervals.begin()+l,newInterval); } return intervals; } };