题目描述:
已知一堆硬币重量为m(<10000), 可能有n种硬币(n<500),价值和重量分别为vi,wi。要求这堆硬币的总价值至少可能是多少?若无法求出输出"This is impossible."
分析:
可以看出,此题是01背包问题的变形,即
1.每种物品有无限多
2.必须装满整个背包
就是加上这样两个限制条件的01背包。
我用的最普通的方法,感觉对物品排序的影响不大。
/*
ZJU2014 Piggy-Bank
*/
#include <stdio.h>
#include <string.h>
#define N 501
#define M 10001
#define clr(a) memset(a,0,sizeof(a))
struct nod{
int v,w;
};
typedef struct nod node;
node a[N];
char e[M];
int b[M],maxm;
int m,n;
int cmp(void const *p,void const *q){
node* x = (node*)p;
node* y = (node*)q;
if(x->w == y->w){
return x->v - y->v >0 ? 1 : -1;
}else return y->w - x->w;
}
int main()
{
int i,j,k,T;
scanf("%d",&T);
while(T--)
{
int w1,w2;
//init
clr(e);
clr(b);
//input
scanf("%d%d",&w1,&w2);
m=w2-w1;
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d%d",&a[i].v,&a[i].w);
//qsort(a,n,sizeof(a[0]),cmp);
//DP
e[0]=1;
b[0]=0;
for(i=0;i<n;i++) //each icon
{
for(j=0;j<=m;j++)
{
if(e[j]){
k=j+a[i].w;
if(k<=m&&(!e[k]||b[j]+a[i].v<b[k])){
b[k]=b[j]+a[i].v;
e[k]=1;
}
}
}
}
if(!e[m]) printf("This is impossible./n");
else printf("The minimum amount of money in the piggy-bank is %d./n",b[m]);
}
//system("pause");
return 0;
}
/*
Sample Input
3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
Sample Output
The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
*/