- 【笔试面试】秒懂深度学习模型小型化:蒸馏法、剪枝…
聊北辰同学
轻量级神经网络神经网络深度学习机器学习数据挖掘
蒸馏:主要思想是,通过大模型指导小模型学习。剪枝:网络剪枝的主要思想就是将权重矩阵中相对“不重要”的权值剔除,然后再重新finetune网络进行微调。紧凑模型设计:MobileNet的深度可分离卷积shufflenet的逐点群卷积(pointwisegroupconvolution)和通道混洗(channelshuffle),前者通过分组卷积降低计算量,后者促进信息在不同组之间流转
- 基于多种模型剪枝方法(L1-norm、Slimming、AutoSlim)的模型轻量化和模型压缩实现
踟蹰横渡口,彳亍上滩舟。
pytorch量化感知训练稀疏训练模型剪枝学习教程剪枝python深度学习
基于多种模型剪枝方法(L1-norm、Slimming、AutoSlim)的模型轻量化实现支持:VGG、MobileNet、Resnet、ShuffleNet等模型。代码下载地址:下载BackBonePrunerPruneRatioOriginal/Pruned/FinetunedAccuracyFLOPs(M)Params(M)MobileV2L1-Norm0.60.937/0.100/0.84
- 讲一下Spark的shuffle过程
冰火同学
Sparkspark大数据分布式
首先Spark的shuffle是Spark分布式集群计算的核心。Spark的shuffle可以从shuffle的阶段划分,shuffle数据存储,shuffle的数据拉取三个方面进行讲解。首先shuffle的阶段分为shuffle的shufflewrite阶段和shuffleread阶段。shufflewrite的触发条件就是上游的Stage任务shuffleMapTask完成计算后,会哪找下游S
- Spark数据倾斜的问题
冰火同学
Sparkspark大数据分布式
Spark数据倾斜业务背景Spark数据倾斜表现Spark的数据倾斜,包括SparkStreaming和SparkSQL,表现主要有下面几种:1、Excutorlost,OOM,Shuffle过程出错2、DriverOOM3、单个Excutor执行器一直在运行,整体任务卡在某个阶段不能结束4、正常运行的任务突然失败数据倾斜产生的原因以Spark使用场景为例,我们再做数据计算的时候会涉及类似coun
- MapReduce:分布式并行编程的基石
JAZJD
mapreduce分布式大数据
目录概述分布式并行编程分布式并行编程模型分布式并行编程框架MapReduce模型简介Map和Reduce函数Map函数Map函数的输入和输出Map函数的常见操作Reduce函数Reduce函数的输入和输出Reduce函数的常见操作工作流程概述各个阶段1.输入分片2.Map阶段3.Shuffle阶段4.Reduce阶段MapReduce工作流程总结Shuffle过程详解1.分区(Partitioni
- 【Hadoop】如何理解MapReduce?
2302_79952574
hadoopmapreduce数据库
MapReduce是一种用于处理大规模数据集的编程模型和计算框架。它的核心思想是将复杂的计算任务分解为两个简单的阶段:Map(映射)和Reduce(归约)。通过这种方式,MapReduce可以高效地并行处理海量数据。一.MapReduce的核心概念1.Map(映射):将输入数据分割成小块,并对每个小块进行初步处理。输出键值对(key-valuepairs),例如。2.Shuffle和Sort(洗牌
- Hadoop、Spark、Flink Shuffle对比
逆袭的小学生
hadoopsparkflink
一、Hadoop的shuffle前置知识:Map任务的数量由Hadoop框架自动计算,等于分片数量,等于输入文件总大小/分片大小,分片大小为HDFS默认值128M,可调Reduce任务数由用户在作业提交时通过Job.setNumReduceTasks(int)设置数据分配到Reduce任务的时间点,在Map任务执行期间,通过Partitioner(分区器)确定每个键值对的目标Reduce分区。默认
- Spark核心算子对比:`reduceByKey`与`groupByKey`源码级解析及生产调优指南
数据大包哥
大数据spark分布式
Spark核心算子对比:reduceByKey与groupByKey源码级解析及生产调优指南1.核心机制对比在Spark中,reduceByKey和groupByKey都是对键值对RDD(RDD[(K,V)])进行聚合操作的高阶算子,但两者的底层实现和性能表现截然不同。特性reduceByKeygroupByKeyShuffle前预聚合✅启用(mapSideCombine=true)❌禁用(map
- spark为什么比mapreduce快?
京东云开发者
sparkmapreduce大数据
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比ma
- Pytorch数据处理工具箱(后半部分)
不要不开心了
机器学习神经网络深度学习人工智能pytorch
今天的内容主要介绍了PyTorch中的数据处理工具箱及其相关工具的使用方法:1.DataLoader:-DataLoader用于批量处理数据,支持多线程加载数据。主要参数包括datase`(数据集)batch_size(批量大小)、shuffle(是否打乱数据)、num_workers(加载数据的线程数)等。DataLoader本身不是迭代器,但可以通过`iter`命令转换为迭代器。2.torch
- 【STL】7.STL常用算法(1)
零零时
c/c++算法c++开发语言学习数据结构stl排序算法
STL常用算法(1)前言简介一.遍历算法1.for_each2.transform二.查找算法1.find2.find_if3.adjacent_find4.binary_search5.count6.cout_if三.排序算法1.sort2.random_shuffle3.merge4.reverse总结前言stl系列主要讲述有关stl的文章,使用STL可以大大提高程序开发的效率和代码的可维护性
- doris:使用 Hint 调整 Join Shuffle 方式
向阳1218
大数据doris
概述Doris支持使用Hint来调整Join操作中数据Shuffle的类型,从而优化查询性能。本节将详细介绍如何在Doris中利用Hint来指定JoinShuffle的类型。注意当前Doris已经具备良好的开箱即用的能力,也就意味着在绝大多数场景下,Doris会自适应的优化各种场景下的性能,无需用户来手工控制hint来进行业务调优。本章介绍的内容主要面向专业调优人员,业务人员仅做简单了解即可。目前
- ShuffleNet V2(2018 CVPR)
刘若里
论文阅读深度学习人工智能学习计算机视觉笔记
论文标题ShuffleNetV2:PracticalGuidelinesforEfficientCNNArchitectureDesign论文作者NingningMa,XiangyuZhang,Hai-TaoZheng,JianSun发表日期2018年07月01日GB引用>NingningMa,XiangyuZhang,Hai-TaoZheng,etal.ShuffleNetV2:Practica
- Hive排序函数源码解密:字节跳动面试官的底层三连问
数据大包哥
#Hive#大厂SQL面试指南hivehadoop数据仓库
Hive排序函数源码解密:字节跳动面试官的底层三连问作为数据工程师,理解Hive排序函数的源码就像掌握汽车的发动机原理。本文通过字节跳动内部技术文档,为你揭示三大排序函数的源码级实现差异。一、分布式执行框架Hive中ROW_NUMBER、RANK和DENSE_RANK的底层实现差异主要体现在相同排序键值的处理逻辑上,其核心流程可分为两个阶段:数据分区(Shuffle阶段)根据PARTITIONBY
- Spark源码分析 – Shuffle
weixin_34292924
大数据
参考详细探究Spark的shuffle实现,写的很清楚,当前设计的来龙去脉HadoopHadoop的思路是,在mapper端每次当memorybuffer中的数据快满的时候,先将memory中的数据,按partition进行划分,然后各自存成小文件,这样当buffer不断的spill的时候,就会产生大量的小文件所以Hadoop后面直到reduce之前做的所有的事情其实就是不断的merge,基于文件
- Hive的ReduceJoin/MapJoin/SMBJoin
for your wish
Hive面试Interviewhivehadoop
Hive中就是把Map,Reduce的Join拿过来,通过SQL来表示。参考链接:LanguageManualJoins-ApacheHive-ApacheSoftwareFoundation1.Reduce/Common/ShuffleJoinReduceJoin在Hive中也叫CommonJoin或ShuffleJoin它会进行把相同key的value合在一起,正好符合我们在sql中的join
- spark为什么比mapreduce快?
程序员
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比m
- spark为什么比mapreduce快?
程序员
作者:京东零售吴化斌spark为什么比mapreduce快?首先澄清几个误区:1:两者都是基于内存计算的,任何计算框架都肯定是基于内存的,所以网上说的spark是基于内存计算所以快,显然是错误的2;DAG计算模型减少的是磁盘I/O次数(相比于mapreduce计算模型而言),而不是shuffle次数,因为shuffle是根据数据重组的次数而定,所以shuffle次数不能减少所以总结spark比m
- C++ 洗牌函数std::shuffle的用法
流星雨爱编程
#C++进阶#数据结构和算法c++开发语言
目录1.简介2.工作原理3.std::shuffle与std::random_shuffle的区别4.rand和srand5.std::shuffle的使用方法6.随机数生成器和分布器7.注意事项1.简介std::shuffle是C++标准库中用于对序列进行随机重排(洗牌)的一种算法。它可以将容器(例如std::vector、std::array、或普通数组等)中的元素随机地打乱顺序,就像洗扑克牌
- C++ – 随机洗牌算法,std::random_shuffle和std::shuffle
鱼儿-1226
vc++c++算法蓝桥杯
1std::random_shuffle和std::shufflestd::random_shuffle和std::shuffle处于头文件#include中。std::random_shuffle和std::shuffle都用于对给定容器范围内的元素重新进行洗牌,打乱顺序重新排序。不过由于std::random_shuffle在迭代器版本(不指定随机函数的情况下)通常依赖std::srand,并
- at coder ABC 392
syt_biancheng
竞赛题题解算法c++
A-ShuffledEquation题意:给一个整数序列(A1,A2,A3),这三个数进行排序后形成(B1,B2,B3)问是否存在排序使B1*B2=B3?思路:因为一共就三个数,只有三种排列方式,我直接全部都列出来判断的,不用管B判断是否为真即可arr[0]*arr[1]==arr[2]||arr[0]*arr[2]==arr[1]||arr[2]*arr[1]==arr[0])#includei
- Spark性能调优系列:Spark资源模型以及调优
Mr Cao
大数据sparkSpark性能调优
Spark资源模型Spark内存模型Spark在一个Executor中的内存分为三块,execution内存、storage内存、other内存。execution内存是执行内存,join、aggregate都在这部分中执行,shuffle的数据也会先缓存在这个内存中,满了再写入磁盘,能够减少IO,Map过程也是在这个内存中执行的。(0.25)storage内存是存储broadcast,cache
- spark技术基础知识
24k小善
spark服务器
1.Spark的宽窄依赖划分Q:Spark中如何划分宽依赖和窄依赖?A:窄依赖:父RDD的每个分区最多被一个子RDD的分区依赖(如map、filter),不会触发shuffle。宽依赖:父RDD的每个分区可能被多个子RDD的分区依赖(如groupByKey、reduceByKey),会触发shuffle。Q:宽依赖和窄依赖对性能的影响是什么?A:窄依赖:计算效率高,数据不需要跨节点传输。宽依赖:涉
- Conmi的正确答案——JAVA随机打乱一个字符串
Conmi·白小丑
JAVA经验jvmjavaspring
JDK版本:17publicstaticStringshuffleString(Stringinput){Listcharacters=newArrayList<>();//拆解字符串到列表for(charc:input.toCharArray()){characters.add(c);}//打乱操作Collections.shuffle(characters);//打乱后重新写入StringBu
- 如何处理大规模数据集中的数据处理:Spark和ApacheFlink
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
文章目录1.简介2.基本概念术语说明数据处理(DataProcessing)任务调度(TaskScheduling)HadoopApacheSparkApacheFlink3.核心算法原理和具体操作步骤以及数学公式讲解1.MapReduce(1)概述(2)算法原理分布式文件系统Map阶段Shuffle阶段Reduce阶段MapReduce的流程示意图Map阶段Shuffle阶段Reduce阶段执行
- 大数据笔记之 Flink1.17 算子
凡许真
大数据flink1.17算子
文章目录前言一、Partition分区(物理分区)1.1随机分区shuffle1.2轮询分区rebalance1.3重缩放分区rescale1.4广播分区broadcast1.5全局分区global1.6keyby1.7自定义分区Custom二、transform2.1flatMap2.2filter2.3RichFunction2.4map三、Aggregate聚合3.1keyBy()3.2ma
- Python从0到100(八十六):神经网络-ShuffleNet通道混合轻量级网络的深入介绍
是Dream呀
Pythonpython神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 「Python系列」Python random模块、hashlib模块
·零落·
Python入门到掌握python开发语言random
文章目录一、Pythonrandom模块1.`random.random()`2.`random.uniform(a,b)`3.`random.randint(a,b)`4.`random.randrange(start,stop,step)`5.`random.choice(seq)`6.`random.shuffle(seq)`7.`random.sample(seq,k)`8.`random
- 性能优化案例:通过合理设置spark.shuffle.memoryFraction参数的值来优化PySpark程序的性能
weixin_30777913
pythonspark大数据
在PySpark中,合理调整spark.shuffle.memoryFraction参数可以有效优化Shuffle阶段的性能,尤其是在存在大量磁盘溢出的场景下。通过合理设置spark.shuffle.memoryFraction并结合其他优化手段,可显著减少Shuffle阶段的磁盘I/O,提升PySpark作业的整体性能。以下是优化案例的总结及分步说明:优化背景问题现象:PySpark作业在Shu
- [C#] 对24位图像进行水平翻转(FlipX)的跨平台SIMD硬件加速向量算法(使用YShuffleX3Kernel)
zyl910
VectorTraitsc#算法开发语言SIMD图像处理
文章目录一、标量算法1.1算法实现1.2基准测试代码二、向量算法2.1算法思路2.1.1难点说明2.1.2解决办法:每次处理3个向量2.1.3用YShuffleX3Kernel对3个向量内的24位像素进行翻转2.2算法实现2.3基准测试代码2.4使用YShuffleX3Kernel_Args来做进一步的优化三、基准测试结果3.1X86架构3.1.1X86架构上`.NET6.0`程序的测试结果3.1
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_