HDOJ 1534 Schedule Problem 差分约束


差分约数:

求满足不等式条件的尽量小的值---->求最长路---->a-b>=c----> b->a (c)


Schedule Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 1503    Accepted Submission(s): 647
Special Judge


Problem Description
A project can be divided into several parts. Each part should be completed continuously. This means if a part should take 3 days, we should use a continuous 3 days do complete it. There are four types of constrains among these parts which are FAS, FAF, SAF and SAS. A constrain between parts is FAS if the first one should finish after the second one started. FAF is finish after finish. SAF is start after finish, and SAS is start after start. Assume there are enough people involved in the projects, which means we can do any number of parts concurrently. You are to write a program to give a schedule of a given project, which has the shortest time.
 

Input
The input file consists a sequences of projects.

Each project consists the following lines:

the count number of parts (one line) (0 for end of input)

times should be taken to complete these parts, each time occupies one line

a list of FAS, FAF, SAF or SAS and two part number indicates a constrain of the two parts

a line only contains a '#' indicates the end of a project 
 

Output
Output should be a list of lines, each line includes a part number and the time it should start. Time should be a non-negative integer, and the start time of first part should be 0. If there is no answer for the problem, you should give a non-line output containing "impossible".

A blank line should appear following the output for each project.

 

Sample Input
   
   
   
   
3 2 3 4 SAF 2 1 FAF 3 2 # 3 1 1 1 SAF 2 1 SAF 3 2 SAF 1 3 # 0
 

Sample Output
   
   
   
   
Case 1: 1 0 2 2 3 1 Case 2: impossible
 

Source
Asia 1996, Shanghai (Mainland China)
 


/* ***********************************************
Author        :CKboss
Created Time  :2015年07月29日 星期三 16时20分17秒
File Name     :HDOJ1534.cpp
************************************************ */

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>

using namespace std;

const int maxn=5000;

int n;
int w[maxn];

struct Edge
{
	int to,next,cost;
}edge[maxn];

int Adj[maxn],Size;

void init()
{
	memset(Adj,-1,sizeof(Adj)); Size=0;
}

void Add_Edge(int u,int v,int c)
{
	edge[Size].to=v;
	edge[Size].cost=c;
	edge[Size].next=Adj[u];
	Adj[u]=Size++;
}

void SAF(int u,int v)
{
	Add_Edge(v,u,w[v]);
}

void SAS(int u,int v)
{
	Add_Edge(v,u,0);
}

void FAF(int u,int v)
{
	Add_Edge(v,u,w[v]-w[u]);
}

void FAS(int u,int v)
{
	Add_Edge(v,u,-w[u]);
}


/// spfa longest road

int dist[maxn],cq[maxn];
bool inq[maxn];

bool spfa()
{
	memset(dist,0xcf,sizeof(dist));
	memset(cq,0,sizeof(cq));
	memset(inq,false,sizeof(inq));

	dist[0]=0;
	queue<int> q;
	inq[0]=true; q.push(0);

	while(!q.empty())
	{
		int u=q.front(); q.pop();

		for(int i=Adj[u];~i;i=edge[i].next)
		{
			int v=edge[i].to;
			if(dist[v]<dist[u]+edge[i].cost)
			{
				dist[v]=dist[u]+edge[i].cost;
				if(!inq[v])
				{
					inq[v]=true;
					cq[v]++;
					if(cq[v]>=n) return false;
					q.push(v);
				}
			}
		}

		inq[u]=false;
	}

	return true; 
}

int main()
{
	//freopen("in.txt","r",stdin);
	//freopen("out.txt","w",stdout);

	int cas=1;
	while(scanf("%d",&n)!=EOF)
	{
		for(int i=1;i<=n;i++) scanf("%d",w+i);

		init();

		char cmd[20];
		while(scanf("%s",cmd)!=EOF)
		{
			if(cmd[0]=='#') break;

			int u,v;
			scanf("%d%d",&u,&v);

			if(strcmp(cmd,"SAF")==0)
			{
				SAF(u,v);
			}
			else if(strcmp(cmd,"FAF")==0)
			{
				FAF(u,v);
			}
			else if(strcmp(cmd,"FAS")==0)
			{
				FAS(u,v);
			}
			else if(strcmp(cmd,"SAS")==0)
			{
				SAS(u,v);
			}
		}

		for(int i=1;i<=n;i++) Add_Edge(0,i,0);
		bool fg=spfa();

		printf("Case %d:\n",cas++);

		if(fg==false)
		{
			puts("impossible");
		}
		else
		{
			int mx=0;
			for(int i=1;i<=n;i++)
			{
				if(dist[i]<mx) mx=dist[i];
			}
			for(int i=1;i<=n;i++)
			{
				printf("%d %d\n",i,dist[i]-mx);
			}
		}
		putchar(10);
	}
    
    return 0;
}



你可能感兴趣的:(HDOJ 1534 Schedule Problem 差分约束)