在drivers/i2c/busses下包含各种I2C总线驱动,如S3C2440的I2C总线驱动i2c-s3c2410.c,使用GPIO模拟I2C总线的驱动i2c-gpio.c,这里只分析i2c-gpio.c。
i2c-gpio.c它是gpio模拟I2C总线的驱动,总线也是个设备,在这里将总线当作平台设备处理,那驱动当然是平台设备驱动,看它的驱动注册和注销函数。
- static int __init i2c_gpio_init(void)
- {
- int ret;
-
- ret = platform_driver_register(&i2c_gpio_driver);
- if (ret)
- printk(KERN_ERR "i2c-gpio: probe failed: %d\n", ret);
-
- return ret;
- }
- module_init(i2c_gpio_init);
-
- static void __exit i2c_gpio_exit(void)
- {
- platform_driver_unregister(&i2c_gpio_driver);
- }
- module_exit(i2c_gpio_exit);
没有什么好说的,它的初始化和注销函数就是注册和注销一个平台设备驱动,直接看它的platform_driver结构i2c_gpio_driver
- static struct platform_driver i2c_gpio_driver = {
- .driver = {
- .name = "i2c-gpio",
- .owner = THIS_MODULE,
- },
- .probe = i2c_gpio_probe,
- .remove = __devexit_p(i2c_gpio_remove),
- };
小提示:是不是我们应该注册一个平台设备,以和这个驱动匹配,那先来注册这个平台设备。
先定义这个平台设备结构,至于怎么注册平台设备我想大家都应该知道吧。
- #if defined(CONFIG_I2C_GPIO) | \
- defined(CONFIG_I2C_GPIO_MODULE)
- static struct i2c_gpio_platform_data i2c_gpio_adapter_data = {
- .sda_pin = PINID_GPMI_D05,
- .scl_pin = PINID_GPMI_D04,
- .udelay = 5,
- .timeout = 100,
- .sda_is_open_drain = 1,
- .scl_is_open_drain = 1,
- };
-
- static struct platform_device i2c_gpio = {
- .name = "i2c-gpio",
- .id = 0,
- .dev = {
- .platform_data = &i2c_gpio_adapter_data,
- .release = mxs_nop_release,
- },
- };
- #endif
在这里struct platform_device结构中的name字段要和struct platform_driver中driver字段中name字段要相同,因为平台总线就是通过这个来判断设备和驱动是否匹配的。注意这里的id将它赋值了0,至于到底有什么用,后面再来细看。这个结构里面还包含一个最重要的数据i2c_gpio_adapter_data,它struct i2c_gpio_platform_data结构类型变量,这个结构体类型定义在include/linux/i2c-gpio.h中。
- struct i2c_gpio_platform_data {
- unsigned int sda_pin;
- unsigned int scl_pin;
- int udelay;
- int timeout;
- unsigned int sda_is_open_drain:1;
- unsigned int scl_is_open_drain:1;
- unsigned int scl_is_output_only:1;
- };
这个结构体主要描述gpio模拟i2c总线,sda_pin和scl_pin表示使用哪两个IO管脚来模拟I2C总线,udelay和timeout分别为它的时钟频率和超时时间,sda_is_open_drain和scl_is_open_drain表示sda、scl这两个管脚是否是开漏(opendrain)电路,如果是设置为1,scl_is_output_only表示scl这个管脚是否只是作为输出,如果是设置为1。
回到驱动中,看其中最重要的i2c_gpio_probe。
- static int __devinit i2c_gpio_probe(struct platform_device *pdev)
- {
- struct i2c_gpio_platform_data *pdata;
- struct i2c_algo_bit_data *bit_data;
- struct i2c_adapter *adap;
- int ret;
-
- pdata = pdev->dev.platform_data;
- if (!pdata)
- return -ENXIO;
-
- ret = -ENOMEM;
- adap = kzalloc(sizeof(struct i2c_adapter), GFP_KERNEL);
- if (!adap)
- goto err_alloc_adap;
- bit_data = kzalloc(sizeof(struct i2c_algo_bit_data), GFP_KERNEL);
- if (!bit_data)
- goto err_alloc_bit_data;
-
- ret = gpio_request(pdata->sda_pin, "sda");
- if (ret)
- goto err_request_sda;
- ret = gpio_request(pdata->scl_pin, "scl");
- if (ret)
- goto err_request_scl;
-
- if (pdata->sda_is_open_drain) {
- gpio_direction_output(pdata->sda_pin, 1);
- bit_data->setsda = i2c_gpio_setsda_val;
- } else {
- gpio_direction_input(pdata->sda_pin);
- bit_data->setsda = i2c_gpio_setsda_dir;
- }
-
- if (pdata->scl_is_open_drain || pdata->scl_is_output_only) {
- gpio_direction_output(pdata->scl_pin, 1);
- bit_data->setscl = i2c_gpio_setscl_val;
- } else {
- gpio_direction_input(pdata->scl_pin);
- bit_data->setscl = i2c_gpio_setscl_dir;
- }
-
- if (!pdata->scl_is_output_only)
- bit_data->getscl = i2c_gpio_getscl;
- bit_data->getsda = i2c_gpio_getsda;
-
- if (pdata->udelay)
- bit_data->udelay = pdata->udelay;
- else if (pdata->scl_is_output_only)
- bit_data->udelay = 50;
- else
- bit_data->udelay = 5;
-
- if (pdata->timeout)
- bit_data->timeout = pdata->timeout;
- else
- bit_data->timeout = HZ / 10;
-
- bit_data->data = pdata;
-
- adap->owner = THIS_MODULE;
- snprintf(adap->name, sizeof(adap->name), "i2c-gpio%d", pdev->id);
- adap->algo_data = bit_data;
- adap->class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
- adap->dev.parent = &pdev->dev;
-
-
-
-
-
-
- adap->nr = (pdev->id != -1) ? pdev->id : 0;
- ret = i2c_bit_add_numbered_bus(adap);
- if (ret)
- goto err_add_bus;
-
- platform_set_drvdata(pdev, adap);
-
- dev_info(&pdev->dev, "using pins %u (SDA) and %u (SCL%s)\n",
- pdata->sda_pin, pdata->scl_pin,
- pdata->scl_is_output_only
- ? ", no clock stretching" : "");
-
- return 0;
-
- err_add_bus:
- gpio_free(pdata->scl_pin);
- err_request_scl:
- gpio_free(pdata->sda_pin);
- err_request_sda:
- kfree(bit_data);
- err_alloc_bit_data:
- kfree(adap);
- err_alloc_adap:
- return ret;
- }
从这句开始pdata= pdev->dev.platform_data;这不正是我们在平台设备结构中定义的数据吗。然后是使用kzalloc申请两段内存空间,一个是为结构struct i2c_adapter申请的,另一个是为结构structi2c_algo_bit_data申请的。
struct i2c_adapter结构定义在include/linux/i2c.h中
- struct i2c_adapter {
- struct module *owner;
- unsigned int id;
- unsigned int class;
- const struct i2c_algorithm *algo;
- void *algo_data;
-
-
- u8 level;
- struct mutex bus_lock;
-
- int timeout;
- int retries;
- struct device dev;
-
- int nr;
- char name[48];
- struct completion dev_released;
- };
在I2C子系统中,I2C适配器使用结构struct i2c_adapter描述,代表一条实际的I2C总线。
struct i2c_algo_bit_data结构定义在include/linux/i2c-algo-bit.h中
- struct i2c_algo_bit_data {
- void *data;
- void (*setsda) (void *data, int state);
- void (*setscl) (void *data, int state);
- int (*getsda) (void *data);
- int (*getscl) (void *data);
-
-
- int udelay;
-
-
-
- int timeout;
- };
这个结构主要用来定义对GPIO管脚的一些操作,还是回到probe中
接下来使用gpio_request去申请这个两个GPIO管脚,申请的目的是为了防止重复使用管脚。然后是根据struct i2c_gpio_platform_data结构中定义的后面三个数据对struct i2c_algo_bit_data结构中的函数指针做一些赋值操作。接下来是I2C时钟频率和超时设置,如果在struct i2c_gpio_platform_data结构中定义了值,那么就采用定义的值,否则就采用默认的值。然后是对struct i2c_adapter结构的一些赋值操作,比如指定它的父设备为这里的平台设备,前面在平台设备中定义了一个id,这里用到了,赋给了struct i2c_adapter中的nr成员,这个值表示总线号,这里的总线号和硬件无关,只是在软件上的区分。然后到了最后的主角i2c_bit_add_numbered_bus,这个函数定义在drivers/i2c/algos/i2c-algo-bit.c中
- int i2c_bit_add_numbered_bus(struct i2c_adapter *adap)
- {
- int err;
-
- err = i2c_bit_prepare_bus(adap);
- if (err)
- return err;
-
- return i2c_add_numbered_adapter(adap);
- }
先看i2c_bit_prepare_bus函数
- static int i2c_bit_prepare_bus(struct i2c_adapter *adap)
- {
- struct i2c_algo_bit_data *bit_adap = adap->algo_data;
-
- if (bit_test) {
- int ret = test_bus(bit_adap, adap->name);
- if (ret < 0)
- return -ENODEV;
- }
-
-
- adap->algo = &i2c_bit_algo;
- adap->retries = 3;
-
- return 0;
- }
bit_test为模块参数,这里不管它,看这样一句adap->algo= &i2c_bit_algo;
来看这个结构定义
- static const struct i2c_algorithm i2c_bit_algo = {
- .master_xfer = bit_xfer,
- .functionality = bit_func,
- };
先看这个结构类型在哪里定义的include/linux/i2c.h
- struct i2c_algorithm {
-
-
-
-
-
-
- int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,
- int num);
- int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
- unsigned short flags, char read_write,
- u8 command, int size, union i2c_smbus_data *data);
-
-
- u32 (*functionality) (struct i2c_adapter *);
- };
其实也没什么,就三个函数指针外加一长串注释
这个结构的master_xfer指针为主机的数据传输,具体来看bit_xfer这个函数,这个函数和I2C协议相关,I2C协议规定要先发送起始信号,才能开始进行数据的传输,最后数据传输完成后发送停止信号,看接下来代码对I2C协议要熟悉,所以这里的关键点是I2C协议。
- static int bit_xfer(struct i2c_adapter *i2c_adap,
- struct i2c_msg msgs[], int num)
- {
- struct i2c_msg *pmsg;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- int i, ret;
- unsigned short nak_ok;
-
- bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
-
- i2c_start(adap);
- for (i = 0; i < num; i++) {
- pmsg = &msgs[i];
- nak_ok = pmsg->flags & I2C_M_IGNORE_NAK;
- if (!(pmsg->flags & I2C_M_NOSTART)) {
- if (i) {
- bit_dbg(3, &i2c_adap->dev, "emitting "
- "repeated start condition\n");
- i2c_repstart(adap);
- }
- ret = bit_doAddress(i2c_adap, pmsg);
- if ((ret != 0) && !nak_ok) {
- bit_dbg(1, &i2c_adap->dev, "NAK from "
- "device addr 0x%02x msg #%d\n",
- msgs[i].addr, i);
- goto bailout;
- }
- }
- if (pmsg->flags & I2C_M_RD) {
-
- ret = readbytes(i2c_adap, pmsg);
- if (ret >= 1)
- bit_dbg(2, &i2c_adap->dev, "read %d byte%s\n",
- ret, ret == 1 ? "" : "s");
- if (ret < pmsg->len) {
- if (ret >= 0)
- ret = -EREMOTEIO;
- goto bailout;
- }
- } else {
-
- ret = sendbytes(i2c_adap, pmsg);
- if (ret >= 1)
- bit_dbg(2, &i2c_adap->dev, "wrote %d byte%s\n",
- ret, ret == 1 ? "" : "s");
- if (ret < pmsg->len) {
- if (ret >= 0)
- ret = -EREMOTEIO;
- goto bailout;
- }
- }
- }
- ret = i;
-
- bailout:
- bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
- i2c_stop(adap);
- return ret;
- }
1.发送起始信号
i2c_start(adap);
看这个函数前,先看I2C协议怎么定义起始信号的
起始信号就是在SCL为高电平期间,SDA从高到低的跳变,再来看代码是怎么实现的
- static void i2c_start(struct i2c_algo_bit_data *adap)
- {
-
- setsda(adap, 0);
- udelay(adap->udelay);
- scllo(adap);
- }
这些setsda和setscl这些都是使用的总线的函数,在这里是使用的i2c-gpio.c中定义的函数,还记得那一系列判断赋值吗。
- #define setsda(adap, val) adap->setsda(adap->data, val)
- #define setscl(adap, val) adap->setscl(adap->data, val)
- #define getsda(adap) adap->getsda(adap->data)
- #define getscl(adap) adap->getscl(adap->data)
2.往下是个大的for循环
到了这里又不得不说这个struct i2c_msg结构,这个结构定义在include/linux/i2c.h中
- struct i2c_msg {
- __u16 addr;
- __u16 flags;
- #define I2C_M_TEN 0x0010 /* this is a ten bit chip address */
- #define I2C_M_RD 0x0001 /* read data, from slave to master */
- #define I2C_M_NOSTART 0x4000 /* if I2C_FUNC_PROTOCOL_MANGLING */
- #define I2C_M_REV_DIR_ADDR 0x2000 /* if I2C_FUNC_PROTOCOL_MANGLING */
- #define I2C_M_IGNORE_NAK 0x1000 /* if I2C_FUNC_PROTOCOL_MANGLING */
- #define I2C_M_NO_RD_ACK 0x0800 /* if I2C_FUNC_PROTOCOL_MANGLING */
- #define I2C_M_RECV_LEN 0x0400 /* length will be first received byte */
- __u16 len;
- __u8 *buf;
- };
这个结构专门用于数据传输相关的addr为I2C设备地址,flags为一些标志位,len为数据的长度,buf为数据。这里宏定义的一些标志还是需要了解一下。
I2C_M_TEN表示10位设备地址
I2C_M_RD读标志
I2C_M_NOSTART无起始信号标志
I2C_M_IGNORE_NAK忽略应答信号标志
回到for,这里的num代表有几个struct i2c_msg,进入for语句,接下来是个if语句,判断这个设备是否定义了I2C_M_NOSTART标志,这个标志主要用于写操作时,不必重新发送起始信号和设备地址,但是对于读操作就不同了,要调用i2c_repstart这个函数去重新发送起始信号,调用bit_doAddress函数去重新构造设备地址字节,来看这个函数。
- static int bit_doAddress(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
- {
- unsigned short flags = msg->flags;
- unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
-
- unsigned char addr;
- int ret, retries;
-
- retries = nak_ok ? 0 : i2c_adap->retries;
-
- if (flags & I2C_M_TEN) {
-
- addr = 0xf0 | ((msg->addr >> 7) & 0x03);
- bit_dbg(2, &i2c_adap->dev, "addr0: %d\n", addr);
-
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok) {
- dev_err(&i2c_adap->dev,
- "died at extended address code\n");
- return -EREMOTEIO;
- }
-
- ret = i2c_outb(i2c_adap, msg->addr & 0x7f);
- if ((ret != 1) && !nak_ok) {
-
- dev_err(&i2c_adap->dev, "died at 2nd address code\n");
- return -EREMOTEIO;
- }
- if (flags & I2C_M_RD) {
- bit_dbg(3, &i2c_adap->dev, "emitting repeated "
- "start condition\n");
- i2c_repstart(adap);
-
- addr |= 0x01;
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok) {
- dev_err(&i2c_adap->dev,
- "died at repeated address code\n");
- return -EREMOTEIO;
- }
- }
- } else {
- addr = msg->addr << 1;
- if (flags & I2C_M_RD)
- addr |= 1;
- if (flags & I2C_M_REV_DIR_ADDR)
- addr ^= 1;
- ret = try_address(i2c_adap, addr, retries);
- if ((ret != 1) && !nak_ok)
- return -ENXIO;
- }
-
- return 0;
- }
这里先做了一个判断,10位设备地址和7位设备地址分别做不同的处理,通常一条I2C总线上不会挂那么多I2C设备,所以10位地址不常用,直接看对7位地址的处理。struct i2c_msg中addr中是真正的设备地址,而这里发送的addr高7位才是设备地址,最低位为读写位,如果为读,最低位为1,如果为写,最低位为0。所以要将struct i2c_msg中addr向左移1位,如果定义了I2C_M_RD标志,就将addr或上1,前面就说过,这个标志就代表读,如果是写,这里就不用处理,因为最低位本身就是0。最后调用try_address函数将这个地址字节发送出去。
- static int try_address(struct i2c_adapter *i2c_adap,
- unsigned char addr, int retries)
- {
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
- int i, ret = 0;
-
- for (i = 0; i <= retries; i++) {
- ret = i2c_outb(i2c_adap, addr);
- if (ret == 1 || i == retries)
- break;
- bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
- i2c_stop(adap);
- udelay(adap->udelay);
- yield();
- bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
- i2c_start(adap);
- }
- if (i && ret)
- bit_dbg(1, &i2c_adap->dev, "Used %d tries to %s client at "
- "0x%02x: %s\n", i + 1,
- addr & 1 ? "read from" : "write to", addr >> 1,
- ret == 1 ? "success" : "failed, timeout?");
- return ret;
- }
最主要的就是调用i2c_outb发送一个字节,retries为重复次数,看前面adap->retries= 3;
如果发送失败,也就是设备没有给出应答信号,那就发送停止信号,发送起始信号,再发送这个地址字节,这就叫retries。来看这个具体的i2c_outb函数
- static int i2c_outb(struct i2c_adapter *i2c_adap, unsigned char c)
- {
- int i;
- int sb;
- int ack;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
-
-
- for (i = 7; i >= 0; i--) {
- sb = (c >> i) & 1;
- setsda(adap, sb);
- udelay((adap->udelay + 1) / 2);
- if (sclhi(adap) < 0) {
- bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
- "timeout at bit #%d\n", (int)c, i);
- return -ETIMEDOUT;
- }
-
-
-
-
-
-
- scllo(adap);
- }
- sdahi(adap);
- if (sclhi(adap) < 0) {
- bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
- "timeout at ack\n", (int)c);
- return -ETIMEDOUT;
- }
-
-
-
-
- ack = !getsda(adap);
- bit_dbg(2, &i2c_adap->dev, "i2c_outb: 0x%02x %s\n", (int)c,
- ack ? "A" : "NA");
-
- scllo(adap);
- return ack;
-
- }
这个函数有两个参数,一个是structi2c_adapter代表I2C主机,一个是发送的字节数据。那么I2C是怎样将一个字节数据发送出去的呢,那再来看看协议。
首先是发送字节数据的最高位,在时钟为高电平期间将一位数据发送出去,最后是发送字节数据的最低位。发送完成之后,我们需要一个ACK信号,要不然我怎么知道发送成功没有,ACK信号就是在第九个时钟周期时数据线为低,所以在一个字节数据传送完成后,还要将数据线拉高,我们看程序中就是这一句sdahi(adap);等待这个ACK信号的到来,这样一个字节数据就发送完成。
回到bit_xfer函数中,前面只是将设备地址字节发送出去了,那么接下来就是该发送数据了。
注意:这里的数据包括操作设备的基地址
如果是读则调用readbytes函数去读,如果是写则调用sendbytes去写,先看readbytes函数
- static int readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
- {
- int inval;
- int rdcount = 0;
- unsigned char *temp = msg->buf;
- int count = msg->len;
- const unsigned flags = msg->flags;
-
- while (count > 0) {
- inval = i2c_inb(i2c_adap);
- if (inval >= 0) {
- *temp = inval;
- rdcount++;
- } else {
- break;
- }
-
- temp++;
- count--;
-
-
-
- if (rdcount == 1 && (flags & I2C_M_RECV_LEN)) {
- if (inval <= 0 || inval > I2C_SMBUS_BLOCK_MAX) {
- if (!(flags & I2C_M_NO_RD_ACK))
- acknak(i2c_adap, 0);
- dev_err(&i2c_adap->dev, "readbytes: invalid "
- "block length (%d)\n", inval);
- return -EREMOTEIO;
- }
-
-
-
- count += inval;
- msg->len += inval;
- }
-
- bit_dbg(2, &i2c_adap->dev, "readbytes: 0x%02x %s\n",
- inval,
- (flags & I2C_M_NO_RD_ACK)
- ? "(no ack/nak)"
- : (count ? "A" : "NA"));
-
- if (!(flags & I2C_M_NO_RD_ACK)) {
- inval = acknak(i2c_adap, count);
- if (inval < 0)
- return inval;
- }
- }
- return rdcount;
- }
其中一个大的while循环,调用i2c_inb去读一个字节,count为数据的长度,单位为多少个字节,
那就来看i2c_inb函数。
- static int i2c_inb(struct i2c_adapter *i2c_adap)
- {
-
-
- int i;
- unsigned char indata = 0;
- struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
-
-
- sdahi(adap);
- for (i = 0; i < 8; i++) {
- if (sclhi(adap) < 0) {
- bit_dbg(1, &i2c_adap->dev, "i2c_inb: timeout at bit "
- "#%d\n", 7 - i);
- return -ETIMEDOUT;
- }
- indata *= 2;
- if (getsda(adap))
- indata |= 0x01;
- setscl(adap, 0);
- udelay(i == 7 ? adap->udelay / 2 : adap->udelay);
- }
-
- return indata;
- }
再来看sendbytes函数
- static int sendbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
- {
- const unsigned char *temp = msg->buf;
- int count = msg->len;
- unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
- int retval;
- int wrcount = 0;
-
- while (count > 0) {
- retval = i2c_outb(i2c_adap, *temp);
-
-
- if ((retval > 0) || (nak_ok && (retval == 0))) {
- count--;
- temp++;
- wrcount++;
-
-
-
-
-
- } else if (retval == 0) {
- dev_err(&i2c_adap->dev, "sendbytes: NAK bailout.\n");
- return -EIO;
-
-
-
-
-
-
-
-
- } else {
- dev_err(&i2c_adap->dev, "sendbytes: error %d\n",
- retval);
- return retval;
- }
- }
- return wrcount;
- }
也是一个大的while循环,同发送地址字节一样,也是调用i2c_outb去发送一个字节,count也是数据长度,由于i2c_outb函数在前面发送设备地址那里已经介绍了,这里也就不贴出来了。
还是回到bit_xfer函数,数据传输完成后,调用i2c_stop函数发送停止信号。我们看停止信号函数怎么去实现的。
- static void i2c_stop(struct i2c_algo_bit_data *adap)
- {
-
- sdalo(adap);
- sclhi(adap);
- setsda(adap, 1);
- udelay(adap->udelay);
- }
看前面发送起始信号的那张图,停止信号就是在时钟为高电平期间,数据线从低到高的跳变。我们看程序是先将数据线拉低,将时钟线拉高,最后将数据拉高,这样就够成了一个停止信号。
还是回到i2c_bit_add_numbered_bus这个函数中来,看另外一个函数调用i2c_add_numbered_adapter。
- int i2c_add_numbered_adapter(struct i2c_adapter *adap)
- {
- int id;
- int status;
-
- if (adap->nr & ~MAX_ID_MASK)
- return -EINVAL;
-
- retry:
- if (idr_pre_get(&i2c_adapter_idr, GFP_KERNEL) == 0)
- return -ENOMEM;
-
- mutex_lock(&core_lock);
-
-
-
- status = idr_get_new_above(&i2c_adapter_idr, adap, adap->nr, &id);
- if (status == 0 && id != adap->nr) {
- status = -EBUSY;
- idr_remove(&i2c_adapter_idr, id);
- }
- mutex_unlock(&core_lock);
- if (status == -EAGAIN)
- goto retry;
-
- if (status == 0)
- status = i2c_register_adapter(adap);
- return status;
- }
最重要的是这句i2c_register_adapter,注册这条I2C总线,进去看看
- static int i2c_register_adapter(struct i2c_adapter *adap)
- {
- int res = 0, dummy;
-
-
- if (unlikely(WARN_ON(!i2c_bus_type.p))) {
- res = -EAGAIN;
- goto out_list;
- }
-
- mutex_init(&adap->bus_lock);
-
-
- if (adap->timeout == 0)
- adap->timeout = HZ;
-
- dev_set_name(&adap->dev, "i2c-%d", adap->nr);
- adap->dev.bus = &i2c_bus_type;
- adap->dev.type = &i2c_adapter_type;
- res = device_register(&adap->dev);
- if (res)
- goto out_list;
-
- dev_dbg(&adap->dev, "adapter [%s] registered\n", adap->name);
-
- #ifdef CONFIG_I2C_COMPAT
- res = class_compat_create_link(i2c_adapter_compat_class, &adap->dev,
- adap->dev.parent);
- if (res)
- dev_warn(&adap->dev,
- "Failed to create compatibility class link\n");
- #endif
-
-
- if (adap->nr < __i2c_first_dynamic_bus_num)
- i2c_scan_static_board_info(adap);
-
-
- mutex_lock(&core_lock);
- dummy = bus_for_each_drv(&i2c_bus_type, NULL, adap,
- i2c_do_add_adapter);
- mutex_unlock(&core_lock);
-
- return 0;
-
- out_list:
- mutex_lock(&core_lock);
- idr_remove(&i2c_adapter_idr, adap->nr);
- mutex_unlock(&core_lock);
- return res;
- }
看内核代码有时就会这样,会陷入内核代码的汪洋大海中,而拔不出来,直接后果是最后都忘记看这段代码的目的,丧失继续看下去的信心。所以为了避免这样情况出现,所以最好在开始看代码的时候要明确目标,我通过这段代码到底要了解什么东西,主干要抓住,其它枝叶就不要看了。
在这里我认为主要的有
1.注册这个I2C总线设备
- adap->dev.bus = &i2c_bus_type;
- adap->dev.type = &i2c_adapter_type;
- res = device_register(&adap->dev);
这个设备的总线类型为i2c_bus_type
- struct bus_type i2c_bus_type = {
- .name = "i2c",
- .match = i2c_device_match,
- .probe = i2c_device_probe,
- .remove = i2c_device_remove,
- .shutdown = i2c_device_shutdown,
- .suspend = i2c_device_suspend,
- .resume = i2c_device_resume,
- };
看一下它的match函数
- static int i2c_device_match(struct device *dev, struct device_driver *drv)
- {
- struct i2c_client *client = i2c_verify_client(dev);
- struct i2c_driver *driver;
-
- if (!client)
- return 0;
-
- driver = to_i2c_driver(drv);
-
- if (driver->id_table)
- return i2c_match_id(driver->id_table, client) != NULL;
-
- return 0;
- }
这个match函数主要用来匹配我们的I2C设备和I2C驱动的,如果匹配成功,最后会调用驱动的probe函数,来看它如何匹配的。
- static const struct i2c_device_id *i2c_match_id(const struct i2c_device_id *id,
- const struct i2c_client *client)
- {
- while (id->name[0]) {
- if (strcmp(client->name, id->name) == 0)
- return id;
- id++;
- }
- return NULL;
- }
就是判断I2C设备的name字段和驱动中id_table中定义的name字段是否相等。
2.往这条总线上添加设备
- static void i2c_scan_static_board_info(struct i2c_adapter *adapter)
- {
- struct i2c_devinfo *devinfo;
-
- down_read(&__i2c_board_lock);
- list_for_each_entry(devinfo, &__i2c_board_list, list) {
- if (devinfo->busnum == adapter->nr
- && !i2c_new_device(adapter,
- &devinfo->board_info))
- dev_err(&adapter->dev,
- "Can't create device at 0x%02x\n",
- devinfo->board_info.addr);
- }
- up_read(&__i2c_board_lock);
- }
遍历__i2c_board_list这条链表,看下面的if语句,首先要让struct i2c_devinfo结构中的busnum等于struct i2c_adapter中的nr,我们前面也说了,这个nr就是i2c总线的总线号,这里可以理解为是在往这条总线上添加设备。所以,如果我们要向I2C注册一个I2C设备的话,直接向__i2c_board_list添加一个设备信息就可以了,先来看这个设备信息结构是怎么定义的。
- struct i2c_board_info {
- char type[I2C_NAME_SIZE];
- unsigned short flags;
- unsigned short addr;
- void *platform_data;
- struct dev_archdata *archdata;
- int irq;
- };
定义这样一个信息呢一般使用一个宏I2C_BOARD_INFO
- #define I2C_BOARD_INFO(dev_type, dev_addr) \
- .type = dev_type, .addr = (dev_addr)
dev_type为设备的名字,前面也说了,这个name一定要和I2C驱动相同。addr为设备的地址。
定义了这样一组信息之后呢,接下来当然是往链表添加这些信息了。
- int __init
- i2c_register_board_info(int busnum,
- struct i2c_board_info const *info, unsigned len)
- {
- int status;
-
- down_write(&__i2c_board_lock);
-
-
- if (busnum >= __i2c_first_dynamic_bus_num)
- __i2c_first_dynamic_bus_num = busnum + 1;
-
- for (status = 0; len; len--, info++) {
- struct i2c_devinfo *devinfo;
-
- devinfo = kzalloc(sizeof(*devinfo), GFP_KERNEL);
- if (!devinfo) {
- pr_debug("i2c-core: can't register boardinfo!\n");
- status = -ENOMEM;
- break;
- }
-
- devinfo->busnum = busnum;
- devinfo->board_info = *info;
- list_add_tail(&devinfo->list, &__i2c_board_list);
- }
-
- up_write(&__i2c_board_lock);
-
- return status;
- }
第一个参数呢需要注意,它是I2C总线号,一定要和具体的I2C总线对应。我们看又定义了这样一个结构struct i2c_devinfo。
- struct i2c_devinfo {
- struct list_head list;
- int busnum;
- struct i2c_board_info board_info;
- };
最后是调用list_add_tail往__i2c_board_list这条链表添加设备信息。
然后是i2c_new_device
- struct i2c_client *
- i2c_new_device(struct i2c_adapter *adap, struct i2c_board_info const *info)
- {
- struct i2c_client *client;
- int status;
-
-
- client = kzalloc(sizeof *client, GFP_KERNEL);
- if (!client)
- return NULL;
-
-
- client->adapter = adap;
-
- client->dev.platform_data = info->platform_data;
-
- if (info->archdata)
- client->dev.archdata = *info->archdata;
-
- client->flags = info->flags;
- client->addr = info->addr;
- client->irq = info->irq;
-
- strlcpy(client->name, info->type, sizeof(client->name));
-
-
-
- status = i2c_check_addr(adap, client->addr);
- if (status)
- goto out_err;
-
- client->dev.parent = &client->adapter->dev;
- client->dev.bus = &i2c_bus_type;
- client->dev.type = &i2c_client_type;
-
- dev_set_name(&client->dev, "%d-%04x", i2c_adapter_id(adap),
- client->addr);
- status = device_register(&client->dev);
- if (status)
- goto out_err;
-
- dev_dbg(&adap->dev, "client [%s] registered with bus id %s\n",
- client->name, dev_name(&client->dev));
-
- return client;
-
- out_err:
- dev_err(&adap->dev, "Failed to register i2c client %s at 0x%02x "
- "(%d)\n", client->name, client->addr, status);
- kfree(client);
- return NULL;
- }
这个函数的功能是新建一个I2C设备并注册它,在I2C子系统中,I2C设备使用结构structi2c_client描述,那么首先要申请内存空间,I2C设备的主机是谁,必须知道挂载到哪条总线上的,然后就是一些赋值操作,最后就是注册设备,那么这个设备就实实在在的挂在到这条总线上了,这也是新的I2C设备注册方式。
3.i2c_do_add_adapter
你看说着说着就跑远了
- static int i2c_do_add_adapter(struct device_driver *d, void *data)
- {
- struct i2c_driver *driver = to_i2c_driver(d);
- struct i2c_adapter *adap = data;
-
-
- i2c_detect(adap, driver);
-
-
- if (driver->attach_adapter) {
-
- driver->attach_adapter(adap);
- }
- return 0;
- }
前面通过i2c_scan_static_board_info往I2C总线上添加设备是新的方式,而这里调用每个I2C设备驱动的attach_adapter函数,然后在attach_adapter函数中去实现设备的注册,这是老的方式,i2c-dev.c中就是采用的这种方式。至此,总线这块就看完了。
原文地址 http://blog.csdn.net/mcgrady_tracy/article/details/7210959