UVA 10303 How Many Trees?

题意:设f[i]表示一共有i个元素时二叉搜索树的个数,那么依次取1~n-1作为根节点,那么左右子树元素的个数就分别是(0,n-1),......,所以f[n] = f[0]*f[n-1]+f[1]*f[n-2]...+f[n-1]f[0],其实也就是Catalan数,高精度的计算,递推公式是f[n]=(4n-2)/(n+1)*f[n-1]
#include <iostream>
#include <cstring>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN = 4000;

int f[MAXN][MAXN];
int l[MAXN];

void div(int x){
    int *t = f[x],y=x+1,cur=0;
    for (int i = l[x]-1; i >= 0; i--){
        cur = cur*10+t[i];
        t[i] = cur / y;
        cur %= y;
    }
    int j;
    for (j = l[x]-1; j > 0 && !t[j]; j--);
    l[x] = j + 1; 
}

void mul(int x){
    int &i = l[x],c=0,y=4*x-2;
    int *p=f[x-1],*t=f[x];
    for (i = 0; i < l[x-1] || c; i++){
        c += p[i] * y;
        t[i] = c % 10;
        c /= 10;
    }
}

void print(int x){
    int *p=f[x];
    for (int i = l[x]-1; i >= 0; i--)
        printf("%d",p[i]);
    printf("\n");
}

int main(){
    int n;
    memset(f,0,sizeof(f));
    f[1][0] = 1;
    l[1] = 1;
    for (int i = 2; i <= 1000; i++){
        mul(i);
        div(i);
    }
    while (scanf("%d",&n) != EOF){
        print(n);
    }
    return 0;
}



你可能感兴趣的:(UVA 10303 How Many Trees?)