题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=625&page=show_problem&problem=4500
详细题解:这丫的题目坑了我一个月,然后A了之后觉得自己的方法完全是个错的0.0
一开始的想法是:最大三角形面积很简单就是用凸包+旋转卡壳 ,最小三角形面积就是将每一个点极角排序。 然后求极点和每个相邻的两点组成的三角形的面积 之后发现这样有问题 如果这两边的夹角很大 但是长度很短 还是可能会面积最小 。 所以又想到以每个点为顶点,和其余点的用长度来排了下序,然后以长度的顺序来组成三角形之后发现这样测完所有数据要50s+
之后左搞右搞,发现原来极角排序写错了,干脆就删除了极角排序,然后发现还是超时30s+
然后无奈的乱改,把边排序的叉积的方法去掉,改为直接公式计算就9s了, 不曾想这竟然过了……
感觉完全就是逻辑错误,贴上代码,大家有什么正解的话,求在下面留言指教。。。。
#include<cstdio> #include<cmath> #include<cstring> #include<iostream> #include<algorithm> using namespace std; #define N 2100 #define inf 0x7fffffff const double eps = 1e-8; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } struct Point { double x, y; Point(double x = 0, double y = 0) : x(x), y(y) {} }; Point p[N]; Point pp[N]; Point ch[N]; typedef Point Vector; Vector operator - (Point A, Point B) {return Vector(A.x-B.x, A.y-B.y);} bool operator == (const Point &a, const Point &b){return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;} bool operator != (const Point &a, const Point &b){return dcmp(a.x-b.x) != 0 || dcmp(a.y-b.y) != 0;} double Dot(Vector A, Vector B){return A.x*B.x + A.y*B.y;} double Length(Vector A){return sqrt(Dot(A, A));} double Cross(Vector A, Vector B){return A.x*B.y - A.y*B.x;} double Area2(Point A, Point B, Point C){return fabs(Cross(B-A, C-A));} Point tmp; bool cmp_bian(Point a, Point b) { double lena = (a.x-tmp.x)*(a.x-tmp.x)+(a.y-tmp.y)*(a.y-tmp.y); double lenb = (b.x-tmp.x)*(b.x-tmp.x)+(b.y-tmp.y)*(b.y-tmp.y); return dcmp(lena - lenb)< 0; //return Length(a - tmp) < Length(b-tmp); } bool cmp ( Point a, Point b ) { if ( a.x != b.x ) return a.x < b.x; else return a.y < b.y; } //凸包 int ConvexHull(Point *p, int n, Point * ch) { sort(p, p+n, cmp); int m = 0; for(int i = 0; i < n; i++) { while(m > 1 && dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0) m--; ch[m++] = p[i]; } int k = m; for(int i = n-2; i >= 0; i--) { while(m > k && dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } //旋转卡壳求最大三角形面积 double rotaing_calipers(Point ch[], int n) { int p; int i, j; double ans = 0; for( i = 0; i < n-1; i++) { p = 1; for( j = i+1; j < n; j++) { while(fabs(Cross(ch[j]-ch[i],ch[p+1]-ch[i])) > fabs((Cross(ch[j]-ch[i],ch[p]-ch[i])))) p = (p+1) % (n-1); ans = max(ans, fabs(Cross(ch[i]-ch[p],ch[j]-ch[p]))); } ans = max(ans, fabs(Cross(ch[i]-ch[p],ch[j]-ch[p]))); } return ans/2; } int main () { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int n; while(scanf("%d", &n),n) { for(int i = 0; i < n; i++) { scanf("%lf %lf", &p[i].x, &p[i].y); pp[i].x = p[i].x; pp[i].y = p[i].y; } double Min = inf, Max = -1; for(int i = 0; i < n; i++) { tmp.x = p[i].x, tmp.y = p[i].y; double temp ; for(int j = 0; j < n; j++) { if(p[i] == pp[j]) continue; if(pp[j+1] != p[i] && j+1 < n) temp = Area2(p[i], pp[j], pp[j+1])/2; else if(pp[j+1] == p[i] && j+2 < n) temp = Area2(p[i], pp[j], pp[j+2])/2; Min = min(Min, temp); if(Min == 0) break; } sort(pp, pp+n, cmp_bian); for(int j = 1; j < n-1; j++) { temp = Area2(p[i],pp[j],pp[j+1])/2; Min = min(Min, temp); } if(Min == 0) break; } int len = ConvexHull(p, n, ch); Max = rotaing_calipers(ch, len); printf("%.1lf %.1lf\n", Min, Max); } return 0; }