62
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
63、
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
62分析:
从左上角走到右下角,每次只能向下或者向右走一步,不管怎么走都需要m+n-2步才能走到,而这其中有m-1步是向下走,有n-1是向右走,只用从这m+n-2个位置中选择m-1个位置。所以答案就是组合问题C(m+n-2,m-1)
public int UniquePaths(int m, int n) { int N=m+n-2; int k=m-1; double result=1; for(int i=1;i<=k;i++) result=result*(N-k+i)/i; return (int)result; }
递归解:(超时)
public int UniquePaths(int m, int n) { if(m==1 || n==1) return 1; return UniquePaths(m-1, n) + UniquePaths(m, n-1); }
动态规划:
map[i,j]的值表示走到i,j位置的路径个数。明显可知,map[i,j]=map[i-1,j]+map[i,j-1]
public int UniquePaths(int m, int n) { int[,] map=new int[m,n]; for(int i=0;i<m;i++) map[i,0]=1; for(int i=0;i<n;i++) map[0,i]=1; for(int i=1;i<m;i++) for(int j=1;j<n;j++) map[i,j]=map[i-1,j]+map[i,j-1]; return map[m-1,n-1]; }
优化:
public int UniquePaths(int m, int n) { int[] map=new int[n]; for(int i=0;i<n;i++) map[i]=1; for(int i=1;i<m;i++) for(int j=1;j<n;j++) map[j]+=map[j-1]; return map[n-1]; }
63、解法类似,只是如果遇到障碍物,则当前空格用0填充。初始化要注意
public int UniquePathsWithObstacles(int[,] obstacleGrid) { int m = obstacleGrid.GetLength(0); int n = obstacleGrid.GetLength(1); int[,] map = new int[m, n]; for (int i = 0; i < m; i++) { if (obstacleGrid[i,0] == 0) map[i, 0] = 1; else { for (int j = i; j < m; j++) map[j, 0] = 0; break; } } for (int i = 0; i < n; i++) { if (obstacleGrid[0, i] == 0) map[0, i] = 1; else { for (int j = i; j < n; j++) map[0, j] = 0; break; } } for (int i = 1; i < m; i++) for (int j = 1; j < n; j++) if (obstacleGrid[i, j] == 0) map[i, j] = map[i, j - 1] + map[i - 1, j]; else map[i, j] = 0; return map[m-1,n-1]; }