数据挖掘笔记-分类-决策树-MapReduce实现-1

之前写的代码都是单机上跑的,发现现在很流行hadoop,所以又试着用hadoop mapreduce来处理下决策树的创建。因为hadoop接触的也不多,所以写的不好,勿怪。

 

看了一些mahout在处理决策树和随机森林的过程,大体过程是Job只有一个Mapper处理,在map方法里面做数据的转换收集工作,然后在cleanup方法里面去做决策树的创建过程。然后将决策树序列化到HDFS上面,分类样本数据集的时候,在从HDFS上面取回决策树结构。大体来说,mahout决策树的构建过程好像并没有结合分布式计算,因为我也并没有仔仔细细的去研读mahout里面的源码,所以可能是我没发现。下面是我实现的一个简单hadoop版本决策树,用的C4.5算法,通过MapReduce去计算增益率。最后生成的决策树并未保存在HDFS上面,后面有时间在考虑下吧。下面是具体代码实现:


public class DecisionTreeC45Job extends AbstractJob {
	
	/** 对数据集做准备工作,主要就是将填充好默认值的数据集再次传到HDFS上*/
	public String prepare(Data trainData) {
		String path = FileUtils.obtainRandomTxtPath();
		DataHandler.writeData(path, trainData);
		System.out.println(path);
		String name = path.substring(path.lastIndexOf(File.separator) + 1);
		String hdfsPath = HDFSUtils.HDFS_TEMP_INPUT_URL + name;
		HDFSUtils.copyFromLocalFile(conf, path, hdfsPath);
		return hdfsPath;
	}
	
	/** 选择最佳属性,读取MapReduce计算后产生的文件,取增益率最大*/
	public AttributeGainWritable chooseBestAttribute(String output) {
		AttributeGainWritable maxAttribute = null;
		Path path = new Path(output);
		try {
			FileSystem fs = path.getFileSystem(conf);
			Path[] paths = HDFSUtils.getPathFiles(fs, path);
			ShowUtils.print(paths);
			double maxGainRatio = 0.0;
			SequenceFile.Reader reader = null;
			for (Path p : paths) {
				reader = new SequenceFile.Reader(fs, p, conf);
				Text key = (Text) ReflectionUtils.newInstance(
						reader.getKeyClass(), conf);
				AttributeGainWritable value = new AttributeGainWritable();
				while (reader.next(key, value)) {
					double gainRatio = value.getGainRatio();
					if (gainRatio >= maxGainRatio) {
						maxGainRatio = gainRatio;
						maxAttribute = value;
					}
					value = new AttributeGainWritable();
				}
				IOUtils.closeQuietly(reader);
			}
			System.out.println("output: " + path.toString());
			HDFSUtils.delete(conf, path);
			System.out.println("hdfs delete file : " + path.toString());
		} catch (IOException e) {
			e.printStackTrace();
		}
		return maxAttribute;
	}
	
	/** 构造决策树 */
	public Object build(String input, Data data) {
		Object preHandleResult = preHandle(data);
		if (null != preHandleResult) return preHandleResult;
		String output = HDFSUtils.HDFS_TEMP_OUTPUT_URL;
		HDFSUtils.delete(conf, new Path(output));
		System.out.println("delete output path : " + output);
		String[] paths = new String[]{input, output};
		//通过MapReduce计算增益率
		CalculateC45GainRatioMR.main(paths);
		
		AttributeGainWritable bestAttr = chooseBestAttribute(output);
		String attribute = bestAttr.getAttribute();
		System.out.println("best attribute: " + attribute);
		System.out.println("isCategory: " + bestAttr.isCategory());
		if (bestAttr.isCategory()) {
			return attribute;
		}
		String[] splitPoints = bestAttr.obtainSplitPoints();
		System.out.print("splitPoints: ");
		ShowUtils.print(splitPoints);
		TreeNode treeNode = new TreeNode(attribute);
		String[] attributes = data.getAttributesExcept(attribute);
		
		//分割数据集,并将分割后的数据集传到HDFS上
		DataSplit dataSplit = DataHandler.split(new Data(
				data.getInstances(), attribute, splitPoints));
		for (DataSplitItem item : dataSplit.getItems()) {
			String path = item.getPath();
			String name = path.substring(path.lastIndexOf(File.separator) + 1);
			String hdfsPath = HDFSUtils.HDFS_TEMP_INPUT_URL + name;
			HDFSUtils.copyFromLocalFile(conf, path, hdfsPath);
			treeNode.setChild(item.getSplitPoint(), build(hdfsPath, 
					new Data(attributes, item.getInstances())));
		}
		return treeNode;
	}
	
	/** 分类,根据决策树节点判断测试样本集的类型,并将结果上传到HDFS上*/
	private void classify(TreeNode treeNode, String trainSet, String testSet, String output) {
		OutputStream out = null;
		BufferedWriter writer = null;
		try {
			Path trainSetPath = new Path(trainSet);
			FileSystem trainFS = trainSetPath.getFileSystem(conf);
			Path[] trainHdfsPaths = HDFSUtils.getPathFiles(trainFS, trainSetPath);
			FSDataInputStream trainFSInputStream = trainFS.open(trainHdfsPaths[0]);
			Data trainData = DataLoader.load(trainFSInputStream, true);
			
			Path testSetPath = new Path(testSet);
			FileSystem testFS = testSetPath.getFileSystem(conf);
			Path[] testHdfsPaths = HDFSUtils.getPathFiles(testFS, testSetPath);
			FSDataInputStream fsInputStream = testFS.open(testHdfsPaths[0]);
			Data testData = DataLoader.load(fsInputStream, true);
			
			DataHandler.fill(testData.getInstances(), trainData.getAttributes(), 0);
			Object[] results = (Object[]) treeNode.classify(testData);
			ShowUtils.print(results);
			DataError dataError = new DataError(testData.getCategories(), results);
			dataError.report();
			String path = FileUtils.obtainRandomTxtPath();
			out = new FileOutputStream(new File(path));
			writer = new BufferedWriter(new OutputStreamWriter(out));
			StringBuilder sb = null;
			for (int i = 0, len = results.length; i < len; i++) {
				sb = new StringBuilder();
				sb.append(i+1).append("\t").append(results[i]);
				writer.write(sb.toString());
				writer.newLine();
			}
			writer.flush();
			Path outputPath = new Path(output);
			FileSystem fs = outputPath.getFileSystem(conf);
			if (!fs.exists(outputPath)) {
				fs.mkdirs(outputPath);
			}
			String name = path.substring(path.lastIndexOf(File.separator) + 1);
			HDFSUtils.copyFromLocalFile(conf, path, output + 
					File.separator + name);
		} catch (IOException e) {
			e.printStackTrace();
		} finally {
			IOUtils.closeQuietly(out);
			IOUtils.closeQuietly(writer);
		}
	}
	
	public void run(String[] args) {
		try {
			if (null == conf) conf = new Configuration();
			String[] inputArgs = new GenericOptionsParser(
					conf, args).getRemainingArgs();
			if (inputArgs.length != 3) {
				System.out.println("error, please input three path.");
				System.out.println("1. trainset path.");
				System.out.println("2. testset path.");
				System.out.println("3. result output path.");
				System.exit(2);
			}
			Path input = new Path(inputArgs[0]);
			FileSystem fs = input.getFileSystem(conf);
			Path[] hdfsPaths = HDFSUtils.getPathFiles(fs, input);
			FSDataInputStream fsInputStream = fs.open(hdfsPaths[0]);
			Data trainData = DataLoader.load(fsInputStream, true);
			/** 填充缺失属性的默认值*/
			DataHandler.fill(trainData, 0);
			String hdfsInput = prepare(trainData);
			TreeNode treeNode = (TreeNode) build(hdfsInput, trainData);
			TreeNodeHelper.print(treeNode, 0, null);
			classify(treeNode, inputArgs[0], inputArgs[1], inputArgs[2]);
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
	
	public static void main(String[] args) {
		DecisionTreeC45Job job = new DecisionTreeC45Job();
		long startTime = System.currentTimeMillis();
		job.run(args);
		long endTime = System.currentTimeMillis();
		System.out.println("spend time: " + (endTime - startTime));
	}

}

CalculateC45GainRatioMR具体实现:

public class CalculateC45GainRatioMR {
	
	private static void configureJob(Job job) {
		job.setJarByClass(CalculateC45GainRatioMR.class);
		
		job.setMapperClass(CalculateC45GainRatioMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(AttributeWritable.class);

		job.setReducerClass(CalculateC45GainRatioReducer.class);
		job.setOutputKeyClass(Text.class);
		job.setOutputValueClass(AttributeGainWritable.class);
		
		job.setInputFormatClass(TextInputFormat.class);
		job.setOutputFormatClass(SequenceFileOutputFormat.class);
	}

	public static void main(String[] args) {
		Configuration configuration = new Configuration();
		try {
			String[] inputArgs = new GenericOptionsParser(
						configuration, args).getRemainingArgs();
			if (inputArgs.length != 2) {
				System.out.println("error, please input two path. input and output");
				System.exit(2);
			}
			Job job = new Job(configuration, "Decision Tree");
			
			FileInputFormat.setInputPaths(job, new Path(inputArgs[0]));
			FileOutputFormat.setOutputPath(job, new Path(inputArgs[1]));
			
			configureJob(job);
			
			System.out.println(job.waitForCompletion(true) ? 0 : 1);
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
}

class CalculateC45GainRatioMapper extends Mapper<LongWritable, Text, 
	Text, AttributeWritable> {
	
	@Override
	protected void setup(Context context) throws IOException,
			InterruptedException {
		super.setup(context);
	}

	@Override
	protected void map(LongWritable key, Text value, Context context)
			throws IOException, InterruptedException {
		String line = value.toString();
		StringTokenizer tokenizer = new StringTokenizer(line);
		Long id = Long.parseLong(tokenizer.nextToken());
		String category = tokenizer.nextToken();
		boolean isCategory = true;
		while (tokenizer.hasMoreTokens()) {
			isCategory = false;
			String attribute = tokenizer.nextToken();
			String[] entry = attribute.split(":");
			context.write(new Text(entry[0]), new AttributeWritable(id, category, entry[1]));
		}
		if (isCategory) {
			context.write(new Text(category), new AttributeWritable(id, category, category));
		}
	}
	
	@Override
	protected void cleanup(Context context) throws IOException, InterruptedException {
		super.cleanup(context);
	}
}

class CalculateC45GainRatioReducer extends Reducer<Text, AttributeWritable, Text, AttributeGainWritable> {
	
	@Override
	protected void setup(Context context) throws IOException, InterruptedException {
		super.setup(context);
	}
	
	@Override
	protected void reduce(Text key, Iterable<AttributeWritable> values,
			Context context) throws IOException, InterruptedException {
		String attributeName = key.toString();
		double totalNum = 0.0;
		Map<String, Map<String, Integer>> attrValueSplits = 
				new HashMap<String, Map<String, Integer>>();
		Iterator<AttributeWritable> iterator = values.iterator();
		boolean isCategory = false;
		while (iterator.hasNext()) {
			AttributeWritable attribute = iterator.next();
			String attributeValue = attribute.getAttributeValue();
			if (attributeName.equals(attributeValue)) {
				isCategory = true;
				break;
			}
			Map<String, Integer> attrValueSplit = attrValueSplits.get(attributeValue);
			if (null == attrValueSplit) {
				attrValueSplit = new HashMap<String, Integer>();
				attrValueSplits.put(attributeValue, attrValueSplit);
			}
			String category = attribute.getCategory();
			Integer categoryNum = attrValueSplit.get(category);
			attrValueSplit.put(category, null == categoryNum ? 1 : categoryNum + 1);
			totalNum++;
		}
		if (isCategory) {
			System.out.println("is Category");
			int sum = 0;
			iterator = values.iterator();
			while (iterator.hasNext()) {
				iterator.next();
				sum += 1;
			}
			System.out.println("sum: " + sum);
			context.write(key, new AttributeGainWritable(attributeName,
					sum, true, null));
		} else {
			double gainInfo = 0.0;
			double splitInfo = 0.0;
			for (Map<String, Integer> attrValueSplit : attrValueSplits.values()) {
				double totalCategoryNum = 0;
				for (Integer categoryNum : attrValueSplit.values()) {
					totalCategoryNum += categoryNum;
				}
				double entropy = 0.0;
				for (Integer categoryNum : attrValueSplit.values()) {
					double p = categoryNum / totalCategoryNum;
					entropy -= p * (Math.log(p) / Math.log(2));
				}
				double dj = totalCategoryNum / totalNum;
				gainInfo += dj * entropy;
				splitInfo -= dj * (Math.log(dj) / Math.log(2));
			}
			double gainRatio = splitInfo == 0.0 ? 0.0 : gainInfo / splitInfo;
			StringBuilder splitPoints = new StringBuilder();
			for (String attrValue : attrValueSplits.keySet()) {
				splitPoints.append(attrValue).append(",");
			}
			splitPoints.deleteCharAt(splitPoints.length() - 1);
			System.out.println("attribute: " + attributeName);
			System.out.println("gainRatio: " + gainRatio);
			System.out.println("splitPoints: " + splitPoints.toString());
			context.write(key, new AttributeGainWritable(attributeName,
					gainRatio, false, splitPoints.toString()));
		}
	}
	
	@Override
	protected void cleanup(Context context) throws IOException, InterruptedException {
		super.cleanup(context);
	}
	
}


代码托管:https://github.com/fighting-one-piece/repository-datamining.git
 

 

你可能感兴趣的:(mapreduce,hadoop,数据挖掘,分类,决策树)