- LeetCode HOT-100 分类总结
悬浮海
#LeetCodeHOT100leetcode算法HOT-100分类总结
文章目录二分搜索排序滑动窗口哈希表位运算前缀和双指针图二叉树回溯贪心:动态规划:背包问题:单调栈(辅助栈):并查集LRU缓存小技巧二分搜索【NO.4】LeetCodeHOT100—4.寻找两个正序数组的中位数【NO.17】LeetCodeHOT100—33.搜索旋转排序数组【NO.18】LeetCodeHOT100—34.在排序数组中查找元素的第一个和最后一个位置排序排序方法,如果可以确定数值的范
- 算法:数据结构与算法(总结)
鲲鹏飞九万里
算法算法数据结构java
数据结构与算法文章目录数据结构与算法一、数据结构1.1BST、AVL、Red-BlackBST1.2Trie字典树、LRUCache、布隆过滤器1.3Union-find并查集1.4数组ArrayList、链表LinkedList、跳表SkipList跳表[Skiplist](https://gitee.com/lf-ren/java-re-new-builder/blob/master/proj
- 【面试笔记】过河问题|图论|羊|狼|农夫|BFS
unity
题干要从A岸出发到B岸,A岸有M只羊、N只狼和1个农夫,船每一趟可载X只动物。有农夫看着、或则羊的数量大于狼,羊就不会被吃。请返回任一躺数最少方案。题解题目可转化为:在一个有向无路长的图中,在不知道各个节点之间如何连接的基础上,找到两个节点之间的最短路径。数据结构publicclassPack{publicintsheep;//羊的数量publicintwolf;//狼的数量publicintfa
- 蓝桥杯Python组最后几天冲刺———吐血总结,练题总结,很管用我学会了
晚风时亦鹿
学习笔记Python算法笔记python
一、重要知识要点1、穷举法2、枚举法3、动态规划4、回溯法5、图论6、深度优先搜索(DFS)7、广度优先搜索(BFS)8、二叉树9、递归10、分治法、矩阵法11、排列组合12、素数、质数、水仙花数13、欧几里得定理gcd14、求最大公约数、最小公倍数15、海伦公式(求三角形面积)16、博弈论17、贪心18、二分查找法19、hash表20、日期计算21、矩形快速幂22、树形DP23、最短路径24、最
- acwing搜索与图论(二)基础dijkstra算法
一缕叶
算法算法图论数据结构
#include#include#includeusingnamespacestd;constintN=510;intn,m;intg[N][N];intdist[N];boolst[N];intdijkstra(){memset(dist,0x3f,sizeofdist);dist[1]=0;for(inti=0;idist[j]))t=j;}st[t]=true;for(intj=1;j<=n
- 图论06-飞地的数量(Java)
XYX的Blog
算法学习图论算法java
6.飞地的数量题目描述给你一个大小为mxn的二进制矩阵grid,其中0表示一个海洋单元格、1表示一个陆地单元格。一次移动是指从一个陆地单元格走到另一个相邻(上、下、左、右)的陆地单元格或跨过grid的边界。返回网格中无法在任意次数的移动中离开网格边界的陆地单元格的数量。示例1:输入:grid=[[0,0,0,0],[1,0,1,0],[0,1,1,0],[0,0,0,0]]输出:3解释:有三个1被
- 为什么算法很难掌握
浅墨cgz
算法
算法之所以难以掌握,主要是因为以下几个原因:1.抽象性算法是对问题的抽象解决方案,通常不依赖于具体的编程语言或实现细节。初学者可能难以将抽象的逻辑转化为具体的代码。例如,动态规划(DP)的核心思想是将问题分解为子问题并存储中间结果,但这种抽象思维需要大量练习才能掌握。2.数学基础要求许多算法依赖于数学知识,例如:时间复杂度分析:需要理解大O表示法、递归关系等。图论算法:需要了解图的基本概念(如节点
- 图论DFS:黑红树
Python_enjoy
C++洛谷题解每周更新栏目深度优先图论算法
我的个人主页{\large\mathsf{{\color{Red}我的个人主页}}}我的个人主页往{\color{Red}{\Huge往}}往期{\color{Green}{\Huge期}}期文{\color{Blue}{\Huge文}}文章{\color{Orange}{\Huge章}}章DFS算法:记忆化搜索DFS算法:全排列问题DFS算法:洛谷B3625迷宫寻路此系列更新频繁,求各位读者点赞
- 算法打卡:第十一章 图论part02
菜鸟求带飞_
数据结构与算法数据结构java算法图论
今日收获:岛屿数量(深搜),岛屿数量(广搜),岛屿的最大面积1.岛屿数量(深搜)题目链接:99.岛屿数量思路:二维遍历数组,先判断当前节点是否被访问过&是否是陆地。如果满足条件则岛屿数量加1,再通过深度优先遍历将其上下左右的陆地设置为访问过。注意:每次传入dfs函数的节点都是符合结果收集条件的,所以不用写结束条件。也可以将判断条件(访问过/不是陆地)写入dfs的结束条件中。方法:importjav
- 图论1-问题 B: 算法7-4,7-5:图的遍历——深度优先搜索
阿佳举世无双
深度优先算法
题目描述深度优先搜索遍历类似于树的先根遍历,是树的先根遍历的推广。其过程为:假设初始状态是图中所有顶点未曾被访问,则深度优先搜索可以从图中的某个顶点v出发,访问此顶点,然后依次从v的未被访问的邻接点出发深度优先遍历图,直至图中所有和v有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作为起始点,重复上述过程,直至图中所有顶点都被访问到为止。其算法可以描述如下:在
- 深入浅出广度优先搜索(BFS):从原理到 Python 代码实现
纪至训至
算法python
引言在图论和计算机科学中,广度优先搜索(Breadth-FirstSearch,简称BFS)是一种用于遍历或搜索图或树结构的算法。它从给定的起始节点开始,以广度优先的方式逐层探索图的节点,直到找到目标节点或遍历完整个图。BFS在许多实际问题中都有广泛应用,如路径规划、迷宫求解、社交网络分析等。本文将详细介绍BFS的原理,并通过一个Python代码示例,即使用BFS查找二维网格中从起点到终点的最短路
- LeetCode解题实战:Python与C++编程技巧
May Wei
本文还有配套的精品资源,点击获取简介:LeetCode汇集了大量算法和数据结构问题,本资料集针对Python和C++两种编程语言,在LeetCode上解决算法问题的策略与实践。Python以其简洁语法和标准库在数据科学和算法实现中占据优势,而C++则以其性能优势在需要高性能计算的场景中受到青睐。本资料集通过实例解析,助你深刻理解Python和C++在算法问题解决中的应用,包括搜索、排序、图论、动态
- 图论算法——最短路问题
青云遮夜雨
数据结构算法数据结构c语言图论
最短路问题无权最短路简单介绍算法优化(借助队列)Dijkstra算法具有负边值的图的最短路算法无权最短路简单介绍对于无权图G(边没有权值或认为权值为1),如果G是连通的,则每个顶点之间都存在路径。最短路径算法就是要找到一条连接不同顶点的最短路径。例如:V2到V5可以是V2->V5,也可以是V2->V0->V3->V5,很明显最短路是前者算法主要思路:广度优先搜索(bfs):对于每个顶点,我们将跟踪
- 后端架构师技术图谱
dreamcasher
架构师后端
《后端架构师技术图谱》(转)数据结构队列集合链表、数组字典、关联数组栈树二叉树完全二叉树平衡二叉树二叉查找树(BST)红黑树B-,B+,B*树LSM树BitSet常用算法排序、查找算法选择排序冒泡排序插入排序快速排序归并排序希尔排序堆排序计数排序桶排序基数排序二分查找Java中的排序工具布隆过滤器字符串比较KMP算法深度优先、广度优先贪心算法回溯算法剪枝算法动态规划朴素贝叶斯推荐算法最小生成树算法
- 算法之图论
专业刷题Pia
算法图论
连接图有向图问题无向图问题无向图最短路径127.单词接龙-力扣(LeetCode)分析:对于无向图最短路径问题,建议使用BFS(对点的扩展关联(扩散迭代方式))。同时由于无向性注意建立查找集合Visit(防止进入循环)。建立uset方便查找。建立umap方便查重并记录。思路:uset记录所有wordlist中的word,通过bfs获得满足条件(uset找到,umap未出现)的点,并在umap记录(
- 图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS)
WANGHAOXIN364
c++c++
图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS)阅读本文前,请确保你已经掌握了递归、栈和队列的基本知识,如想掌握搜索的代码实现,请确保你能够用代码实现栈和队列的基本操作。深度优先遍历(DepthFirstSearch,简称DFS)与广度优先遍历(BreathFirstSearch,简称BFS)是图论中两种非常重要的算法,也是进行更高的算法阶段学习的最后一道门槛。搜索算法频繁出现在算
- 代码随想录算法训练营DAY56|图论理论基础、98. 所有可达路径、深搜广搜基础
阿緑
代码随想录打卡算法图论
图论理论基础强连通图是在有向图中任何两个节点是可以相互到达在无向图中的极大连通子图称之为该图的一个连通分量。98.所有可达路径defdfs(graph,a,n,path,result):ifa==n-1:result.append(('').join(path[:]))forjinrange(N):ifgraph[a][j]:path.append(str(j+1))dfs(graph,j,n,p
- 图论1-问题 C: 算法7-6:图的遍历——广度优先搜索
阿佳举世无双
算法
题目描述广度优先搜索遍历类似于树的按层次遍历的过程。其过程为:假设从图中的某顶点v出发,在访问了v之后依次访问v的各个未曾被访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使“先被访问的顶点的邻接点”先于“后被访问的顶点的邻接点”被访问,直至图中所有已被访问的顶点的邻接点都被访问到。若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作为起始点。重复上述过程,直至图中所有顶点
- 华为OD机试题库大全【JAVA&Python&C++&JS题解】
步入烟尘
算法个人练习笔记python华为odjavajavascriptc++c语言
OD机试是一项重要环节,用于评估应聘者的编程能力和算法理解程度。在申请OD岗位时,应聘者需要首先通过机试的考核,才有机会进入后续的面试环节。机试的内容主要包括算法和数据结构的应用,题型可能涵盖递归、分治、单调栈、并查集、滑动窗口、前缀和、查分、二分查找、BFS广搜以及DFS深搜等多种算法。考试形式为在线答题,题目难度和具体内容会根据不同的招聘岗位而有所调整。华为OD机试共有三道题,前两道题的总分是
- 华为OD机试 - 工单调度策略 - 并查集(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为odpythonjavascript
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述当小区通信设备上报警时,系统会自动生成待处
- 华为OD机试 - 需要广播的服务器数量 - 并查集(Python/JS/C/C++ 2024 E卷 200分)
哪 吒
华为od服务器python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述服务器连接方式包括直接相连,间接连接。A和
- 【高阶数据结构】并查集
椿融雪
数据结构与算法数据结构并查集
文章目录一、并查集原理二、并查集实现三、并查集应用一、并查集原理在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后按一定的规律将归于同一组元素的集合合并。在此过程中要反复用到查询某一个元素归属于那个集合的运算。适合于描述这类问题的抽象数据类型称为并查集(union-findset)。比如:某公司今年校招全国总共招生10人,西安招4人,成都招3人,
- 数据结构应用实例(四)——最小生成树
cyzhou1221
数据结构基础数据结构
Content:一、问题描述二、算法思想三、代码实现四、两种算法的比较五、小结一、问题描述 利用prim算法和kruskal算法实现最小生成树问题;二、算法思想 首先判断图是否连通,只有在连通的情况下才进行最小树的生成;三、代码实现#include#include#include#definemaxx999999#pragmawarning(disable:4996)typedefstruct
- 【Python・统计学】Kruskal-Wallis检验/H检验(原理及代码)
TUTO_TUTO
python统计学python学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~(部分定义等来源于知乎百度等)本文重点:Kruskal-Wallis检验(Kruskal-Wallistest),也称H检验【1.定义和简单原理】【2.应用条件】【3.数据实例以及Python代码】【4.多重比较(例:Dunn检验)】1.定义和简单原理Krusk
- 连通无向图一般中心的算法及其matlab程序详解
夏天天天天天天天#
图论算法matlab图论
#################本文为学习《图论算法及其MATLAB实现》的学习笔记#################若服务点只允许取在各顶点上,而服务对象却取在各顶点及各边(或弧)上的点,则在所有顶点中选定一个顶点作为图的一般中心其条件是该点离它本身的最远服务对象(包括顶点及各边(或弧)上的点)的距离达到极小值。寻找无向图的一般中心对解决网络最佳服务点确定的问题是十分有效的,使得服务对象的范围
- 大二上学期详细学习计划
学会沉淀。
学习
本学习完成目标:项目:书籍:《mysql必知必会》《java核心技术卷》(暂时)加强JavaSE的学习,掌握Java核心Mysql+sql(把牛客上的那50道sql语句题写完)git+maven完成springboot项目(跟着黑马敲)对于每天的Java学习进行记录算法:刷题(多去刷cf上的题,每周15道)针对最近比赛薄弱的地方加强练习(图论,字符串,动态规划,搜索)cf先上1400,牛客和atc
- 运筹学——图论与最短距离(Python实现)(2),2024年最新Python高级面试framework
m0_60575487
2024年程序员学习图论python面试
适用于wij≥0,给出了从vs到任意一个点vj的最短路。Dijkstra算法是在1959年提出来的。目前公认,在所有的权wij≥0时,这个算法是寻求最短路问题最好的算法。并且,这个算法实际上也给出了寻求从一个始定点vs到任意一个点vj的最短路。2案例1——贪心算法实现==============2.1旅行商问题(TSP)**旅行商问题(TravelingSalesmanProblem,TSP)**
- 数据结构与算法 - 贪心算法
临界点oc
数据结构与算法贪心算法算法
一、贪心例子贪心算法或贪婪算法的核心思想是:1.将寻找最优解的问题分为若干个步骤2.每一步骤都采用贪心原则,选取当前最优解3.因为没有考虑所有可能,局部最优的堆叠不一定让最终解最优贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。这种算法通常用于求解优化问题,如最小生成树、背包问题等。贪心算法的应用:1.背包问题:给定一组物品和一个背包
- 图论篇--代码随想录算法训练营第五十八天打卡|拓扑排序,dijkstra(朴素版)
热爱编程的OP
leetcode算法图论数据结构c++
拓扑排序题目链接:117.软件构建题目描述:某个大型软件项目的构建系统拥有N个文件,文件编号从0到N-1,在这些文件中,某些文件依赖于其他文件的内容,这意味着如果文件A依赖于文件B,则必须在处理文件A之前处理文件B(0#include#include#includeusingnamespacestd;intmain(){intm,n,s,t;cin>>n>>m;vectorinDegree(n,0
- 代码随想录算法训练营Day56|| 图论part06
傲世尊
图论
卡玛网108冗余链接:每输入一条边,检查两个节点是否在同一集合中,如果已经在了,就说明这条边是多余的,直接输出。(如果加入这条边就一定成环了)卡玛网109冗余链接II:这题的复杂度直接上升了一百个档次,需要准备许多函数待调用。思路必须得极其清楚。第一遍看下来理解了,自己写肯定写不出来,需要看好几遍的题。
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep