题目链接:POJ 1556 The Doors
几何+最短路,把起点,终点和不在边界上的点记录下,枚举这些点,枚举所有墙,判断两个点是否被墙相隔,其实就是判断线段是否规范相交,不相隔的点算出来两点间的直线距离赋值给对应dis,相隔的点对应的dis设为最大值,这道题不能用memset把dis数组设为0x3f,因为double不是四个字节的。统计好dis后跑一遍dijkstra。
poj上输出浮点数时候,g++交需要这么写: printf("%.2f\n", d[4 * n + 1]),c++交lf和f都可以。
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> using namespace std; const double eps = 1e-10; const int MAX_N = 100; const int INF = 0x3f3f3f3f; struct Point { double x, y; Point(double x=0, double y=0):x(x),y(y) { } }; typedef Point Vector; Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); } Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); } Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point &b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; } bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2) { double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1), c3 = Cross(b2-b1,a1-b1), c4=Cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; } int n; Point p[MAX_N]; double dis[MAX_N][MAX_N]; double d[MAX_N]; int vis[MAX_N]; void dijkstra() { memset(vis, 0, sizeof(vis)); for(int i = 1; i <= 4 * n + 1; i++) d[i] = INF; d[0] = 0; for(int i = 0; i <= 4 * n + 1; i++) { int x, m = INF; for(int y = 0; y <= 4 * n + 1; y++) { if(!vis[y] && d[y] <= m) m = d[x = y]; } vis[x] = 1; for(int y = 0; y <= 4 * n + 1; y++) { if(!vis[y] && d[y] > d[x] + dis[x][y]) d[y] = d[x] + dis[x][y]; } } } int main() { //freopen("in.txt", "r", stdin); while(scanf("%d", &n), n != -1) { double x, y; p[0].x = 0, p[0].y = 5; p[4 * n + 1].x = 10, p[4 * n + 1].y = 5; for(int i = 0; i < n; i++) { scanf("%lf", &x); for(int j = 1; j <= 4; j++) { scanf("%lf", &y); p[4 * i + j].x = x; p[4 * i + j].y = y; } } bool flag = true; for(int i = 0; i <= 4 * n + 1; i++) { for(int j = i + 1; j <= 4 * n + 1; j++) { flag = true; for(int k = 0; flag && k < n; k++) { for(int l = 0; flag && l < 3; l++) { if(l == 0) { if(SegmentProperIntersection(p[i], p[j], Point(p[4 * k].x, 0), p[4 * k + 1])) flag = false; } else if(l == 1) { if(SegmentProperIntersection(p[i], p[j], p[4 * k + 2], p[4 * k + 3])) flag = false; } else { if(SegmentProperIntersection(p[i], p[j], Point(p[4 * k].x, 10.0), p[4 * k + 4])) flag = false; } } } if(flag) dis[i][j] = dis[j][i] = sqrt((p[i].x - p[j].x) * (p[i].x - p[j].x) + (p[i].y - p[j].y) * (p[i].y - p[j].y)); else dis[i][j] = dis[j][i] = INF; } } dijkstra(); //printf("%.2lf\n", d[4 * n + 1]); // c++ printf("%.2f\n", d[4 * n + 1]); // g++ } return 0; }