传送门:【FZU】Problem 2137 奇异字符串
题目分析:枚举x所在位置,向左右暴力扩展,lcp(L,x+1)>=x-L就累加ans。复杂度是O(nlogn+26*n),复杂度可以这么证明,假设我们以字母a为中心,那么不存在字母a的位置最多n-1个,直接枚举过去就好了,其他字母同理。
my code:
#include <stdio.h> #include <algorithm> #include <string.h> #include <queue> #include <math.h> #include <map> #include <set> #include <iostream> #include <string> #include <vector> using namespace std; typedef long long LL ; #define rep( i , a , b ) for ( int i = ( a ) ; i < ( b ) ; ++ i ) #define For( i , a , b ) for ( int i = ( a ) ; i <= ( b ) ; ++ i ) #define rev( i , a , b ) for ( int i = ( a ) ; i >= ( b ) ; -- i ) #define clr( a , x ) memset ( a , x , sizeof a ) #define cpy( a , x ) memcpy ( a , x , sizeof a ) const int MAXN = 100005 ; char s[MAXN] ; int t1[MAXN] , t2[MAXN] , c[MAXN] , sa[MAXN] , rank[MAXN] , xy[MAXN] , height[MAXN] ; int dp[MAXN][18] ; int logn[MAXN] ; int n ; int cmp ( int* r , int a , int b , int d ) { return r[a] == r[b] && r[a + d] == r[b + d] ; } void getHeight ( int n , int k = 0 ) { For ( i , 0 , n ) rank[sa[i]] = i ; rep ( i , 0 , n ) { if ( k ) -- k ; int j = sa[rank[i] - 1] ; while ( s[i + k] == s[j + k] ) ++ k ; height[rank[i]] = k ; } } void build ( int n , int m = 128 ) { int* x = t1 , *y = t2 ; rep ( i , 0 , m ) c[i] = 0 ; rep ( i , 0 , n ) c[x[i] = s[i]] ++ ; rep ( i , 1 , m ) c[i] += c[i - 1] ; rev ( i , n - 1 , 0 ) sa[-- c[x[i]]] = i ; for ( int d = 1 , p = 0 ; p < n ; d <<= 1 , m = p ) { p = 0 ; rep ( i , n - d , n ) y[p ++] = i ; rep ( i , 0 , n ) if ( sa[i] >= d ) y[p ++] = sa[i] - d ; rep ( i , 0 , m ) c[i] = 0 ; rep ( i , 0 , n ) c[xy[i] = x[y[i]]] ++ ; rep ( i , 1 , m ) c[i] += c[i - 1] ; rev ( i , n - 1 , 0 ) sa[-- c[xy[i]]] = y[i] ; swap ( x , y ) ; p = 0 ; x[sa[0]] = p ++ ; rep ( i , 1 , n ) x[sa[i]] = cmp ( y , sa[i - 1] , sa[i] , d ) ? p - 1 : p ++ ; } getHeight ( n - 1 ) ; } void init_RMQ ( int n ) { For ( i , 1 , n ) dp[i][0] = height[i] ; logn[1] = 0 ; For ( i , 2 , n ) logn[i] = logn[i - 1] + ( i == ( i & -i ) ) ; for ( int j = 1 ; ( 1 << j ) < n ; ++ j ) { for ( int i = 1 ; i + ( 1 << j ) - 1 <= n ; ++ i ) { dp[i][j] = min ( dp[i][j - 1] , dp[i + ( 1 << ( j - 1 ) )][j - 1] ) ; } } } int rmq ( int L , int R ) { int k = logn[R - L + 1] ; return min ( dp[L][k] , dp[R - ( 1 << k ) + 1][k] ) ; } int lcp ( int a , int b ) { a = rank[a] , b = rank[b] ; return a < b ? rmq ( a + 1 , b ) : rmq ( b + 1 , a ) ; } void solve () { LL ans = 0 ; scanf ( "%s" , s ) ; n = strlen ( s ) ; build ( n + 1 ) ; init_RMQ ( n ) ; rep ( i , 0 , n ) { int l = i - 1 , r = i + 1 ; while ( l >= 0 && r < n ) { if ( s[l] == s[i] || s[i] == s[r] ) break ; //printf ( "%c %c %c\n" , s[l] , s[i] , s[r] ) ; int t = lcp ( l , i + 1 ) ; //printf ( "%d %d %d %d\n" , t , i - l , i , l ) ; if ( t >= i - l ) { ans += ( LL ) ( r - l + 1 ) * ( r - l + 1 ) ; } -- l ; ++ r ; } } printf ( "%I64d\n" , ans ) ; } int main () { int T ; scanf ( "%d" , &T ) ; For ( i , 1 , T ) solve () ; return 0 ; }