UVa 1045 - The Great Wall Game 最小权匹配
题意:给你一个n*n的棋盘,上面有n个棋子,要求通过移动各个棋子使得棋子在同一行或者同一列或者对角线上,求最小移动次数。
思路:直接对于所有可能情况构造二分图,X集合为最初棋子,Y集合为移动后的棋子方位,边权为移动的次数。然后KM算法求最小权匹配。
/* ********************************************** Author : JayYe Created Time: 2013-8-18 15:55:41 File Name : zzz.cpp *********************************************** */ #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int max(int a, int b) { return a>b?a:b; } int min(int a, int b) { return a>b?b:a; } const int maxn = 22; struct PP { int x, y; }a[maxn]; int n, slack[maxn], lx[maxn], ly[maxn], match[maxn], w[maxn][maxn]; bool S[maxn], T[maxn]; bool dfs(int i) { S[i] = 1; for(int j = 1;j <= n; j++) if(!T[j]) slack[j] = min(slack[j], w[i][j] - lx[i] - ly[j]); for(int j = 1;j <= n; j++) if(w[i][j] == lx[i] + ly[j] && !T[j]) { T[j] = 1; if(!match[j] || dfs(match[j])) { match[j] = i; return true; } } return false; } void update() { int delta = 1<<22; for(int i = 1;i <= n; i++) if(!T[i]) delta = min(delta, slack[i]); for(int i = 1;i <= n; i++) { if(S[i]) lx[i] += delta; if(T[i]) ly[i] -= delta; } } void KM() { int i, j; for(i = 1;i <= n; i++) { ly[i] = match[i] = 0; lx[i] = 1<<22; for(j = 1;j <= n; j++) lx[i] = min(lx[i], w[i][j]); } for(i = 1;i <= n; i++) { while(true) { for(j = 1;j <= n; j++) S[j] = T[j] = 0, slack[j] = 1<<22; if(dfs(i)) break; else update(); } } } int solve() { int i, j, k; for(i = 1;i <= n; i++) scanf("%d%d" ,&a[i].x, &a[i].y); int ans = 1<<22; // 棋子在同一行的情况 for(i = 1;i <= n; i++) { for(j = 1;j <= n; j++) for(k = 1;k <= n; k++) w[j][k] = abs(i - a[j].x) + abs(k - a[j].y); KM(); int cur = 0; for(j = 1;j <= n; j++) cur += lx[j] + ly[j]; ans = min(ans, cur); } // 棋子在同一列的情况 for(i = 1;i <= n; i++) { for(j = 1;j <= n; j++) for(k = 1;k <= n; k++) w[j][k] = abs(k - a[j].x) + abs(i - a[j].y); KM(); int cur = 0; for(j = 1;j <= n; j++) cur += lx[j] + ly[j]; ans = min(ans, cur); } // 棋子在对角线的两种情况 for(i = 1;i <= n; i++) for(j = 1;j <= n; j++) w[i][j] = abs(j - a[i].x) + abs(j - a[i].y); KM(); int cur = 0; for(i = 1;i <= n; i++) cur += lx[i] + ly[i]; ans = min(ans, cur); for(i = 1;i <= n; i++) for(j =1;j <= n; j++) w[i][j] = abs(j - a[i].x) + abs(n-j+1 - a[i].y); KM(); cur = 0; for(i = 1;i <= n; i++) cur += lx[i] + ly[i]; ans = min(ans, cur); return ans; } int main() { int cas = 1; while(scanf("%d", &n) != -1 && n) { printf("Board %d: %d moves required.\n\n", cas++, solve()); } return 0; }
UVa 12168 - Cat vs. Dog 最大独立集
根据题意直接构造二分图,X集合表示喜欢狗的人,Y集合表示喜欢猫的人,如果X集合里的人不喜欢某只猫,就与Y集合里喜欢该猫的人连边,反之也一样。那么要使得尽可能多的人满足愿望,也就是求最大独立集。
最大独立集 = N - 最大匹配
/* ********************************************** Author : JayYe Created Time: 2013-8-18 16:53:58 File Name : zzz.cpp *********************************************** */ #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; const int maxn = 500+10; struct PP { int x, y; PP() {} PP(int x, int y) : x(x), y(y) {} }cat[maxn], dog[maxn]; int n, m, match[maxn]; bool vis[maxn], mp[maxn][maxn]; bool dfs(int i) { for(int j = 1;j <= m; j++) if(mp[i][j] && !vis[j]) { vis[j] = 1; if(!match[j] || dfs(match[j])) { match[j] = i; return true; } } return false; } int main() { int i, j, t, c, d; scanf("%d", &t); while(t--) { scanf("%d%d%d", &c, &d, &n); int n1 = 0, n2 = 0, x, y; for(i = 1;i <= n; i++) { char ch1[11], ch2[11]; scanf("%s%s", ch1, ch2); if(ch1[0] == 'C') { sscanf(ch1+1, "%d", &x); sscanf(ch2+1, "%d", &y); cat[++n1] = PP(x, y); } else { sscanf(ch1+1, "%d", &x); sscanf(ch2+1, "%d", &y); dog[++n2] = PP(x, y); } } n = n1, m = n2; if(n == 0 || m == 0) { printf("%d\n", n+m); continue; } for(i = 1;i <= n; i++) { for(j = 1;j <= m; j++) { if(cat[i].y == dog[j].x || cat[i].x == dog[j].y) mp[i][j] = 1; else mp[i][j] = 0; } } for(i = 1;i <= m; i++) match[i] = 0; int ans = 0; for(i = 1;i <= n; i++) { for(j = 1;j <= m; j++) vis[j] = 0; if(dfs(i)) ans++; } printf("%d\n", n+m - ans); } return 0; }
题意:给你一个n个点的有向带环图,要你找出几个圈使得每个结点只属于一个圈,要求输出最小的总的长度,如果没有这样的方案,输出N。
构造二分图,把所有的结点拆成两个,放在X集合的为i, 放在Y集合的为 i ',如果有边i -> j,则在图中引入边i -> j',这样子构造好后实际上就是求最小权完美匹配,如果没有完美匹配则无解。
这里需要注意的是输入的边可能有好多条是重复的但是权值不同,需要取最小权,这个wa了我好几发。。。
/* ********************************************** Author : JayYe Created Time: 2013-8-18 17:31:11 File Name : zzz.cpp *********************************************** */ #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; int max(int a, int b) { return a>b?a:b; } int min(int a, int b) { return a>b?b:a; } const int INF = 1<<22; const int maxn = 100+10; int n, slack[maxn], match[maxn], lx[maxn], ly[maxn], w[maxn][maxn]; bool S[maxn], T[maxn]; bool dfs(int i) { S[i] = 1; for(int j = 1;j <= n; j++) if(!T[j]) slack[j] = min(slack[j], w[i][j] - lx[i] - ly[j]); for(int j = 1;j <= n; j++) if(w[i][j] == lx[i] + ly[j] && !T[j]) { T[j] = 1; if(!match[j] || dfs(match[j])) { match[j] = i; return true; } } return false; } void update() { int delta = INF; for(int i = 1;i <= n; i++) if(!T[i]) delta = min(delta, slack[i]); for(int i = 1;i <= n; i++) { if(S[i]) lx[i] += delta; if(T[i]) ly[i] -= delta; } } void KM() { int i, j; for(i = 1;i <= n; i++) { ly[i] = match[i] = 0; lx[i] = INF; for(j = 1;j <= n; j++) lx[i] = min(lx[i], w[i][j]); } for(i = 1;i <= n; i++) { while(true) { for(j = 1;j <= n; j++) S[j] = T[j] = 0, slack[j] = INF; if(dfs(i)) break; else update(); } } } void solve() { int i, j; for(i = 1;i <= n; i++) for(j = 1;j <= n; j++) w[i][j] = INF; for(i = 1;i <= n; i++) { while(scanf("%d", &j) && j) { int dis; scanf("%d", &dis); // 同一条路要取最小值 w[i][j] = min(w[i][j], dis); } } KM(); int ans = 0; for(i = 1;i <= n; i++) ans += lx[i] + ly[i]; if(ans > INF-10) puts("N"); else printf("%d\n", ans); } int main() { while(scanf("%d", &n) != -1 && n) { solve(); } return 0; }