Parencodings
Time Limit: 1000MS |
|
Memory Limit: 10000K |
Total Submissions: 11181 |
|
Accepted: 6583 |
Description
Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2
6
4 5 6 6 6 6
9
4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
题意:一个括号表达式可以按照如下的规则表示,就是每个右括号之前的左括号数。
比如(((()()()))),每个右括号之前的左括号数序列为P=4 5 6 6 6 6,而每个右括号所在的括号内包含的括号数为W=1 1 1 4 5 6.
现在给定P,输出W。
我的思路:先根据P还原整个括号表达式,存在数组中,然后递归解出W..
#include<iostream>
using namespace std;
char y[10000]; int p[50],w[50],n,l,j;
int f()
{
int s=1;
while(1)
if(y[j]=='(')
{
j++;
s+=f();
}
else
{
w[l++]=s;
j++;
return s;
}
}
int main()
{
int t,i,k;
cin>>t;
while(t--)
{
cin>>n;
for(i=0,l=0,k=0;i<n;i++)
{
cin>>p[i];
for(j=0;j<p[i]-k;j++)
y[l++]='(';
y[l++]=')';
k=p[i];
}
l=j=0;
f();
for(i=0;i<n;i++)
cout<<w[i]<<' ';
cout<<endl;
}
return 0;
}