题目链接:uva 11014 - Make a Crystal
题目大意:给定n,表示在一个三维的空间,在坐标均不大于n的点中选取2个点,保证这两个点与(0,0,0)三点不同线。问能找到多少对。
解题思路:容斥原理,如果有坐标(x,y,z),并且(2x,2y,2z)在范围内,那个该对点就不可取,于是要减掉包含公共因子的部分。所以枚举因子,但是如果因子包含有偶数个质因子,则加上。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 200000;
int np, pri[maxn+5], vis[maxn+5];
void priTable (int n) {
np = 0;
memset(vis, 0, sizeof(vis));
for (int i = 2; i <= n; i++) {
if (vis[i])
continue;
pri[np++] = i;
for (int j = 2*i; j <= n; j += i)
vis[j] = 1;
}
}
ll N;
inline ll count (ll n) {
return n * n * n - 1;
}
inline ll fcount (ll n) {
int ans = 0;
for (int i = 0; i < np && pri[i] <= n; i++) {
if (n < maxn && !vis[n]) {
ans++;
break;
}
if (n%pri[i] == 0) {
ans++;
n /= pri[i];
if (n%pri[i] == 0)
return 0;
}
}
return ans&1 ? -1 : 1;
}
ll solve () {
ll ans = count(N+1);
for (ll i = 2; i <= N; i++) {
ll t = fcount(i);
ans += count(N/(2*i) * 2 + 1) * t;
}
return ans;
}
int main () {
int cas = 1;
priTable(maxn);
while (scanf("%lld", &N) == 1 && N) {
printf("Crystal %d: %lld\n", cas++, solve());
}
return 0;
}