转载:
http://www.cnblogs.com/blueclue/archive/2010/07/21/1780779.html
条件变量(Condition Variables)
条件变量是什么?
主线程
|
|
线程A
|
Thread B
|
主线程
|
创建和销毁条件变量
函数:
pthread_cond_init (condition,attr) pthread_cond_destroy (condition) pthread_condattr_init (attr) pthread_condattr_destroy (attr) |
用法:
- 静态初始化,像这样声明:pthread_con_t myconvar = PTHREAD_CON_INITIALIZER;
- 动态初始化,使用pthread_cond_init()函数。用创建条件变量的ID作为件参数传给线程,这种方法允许设置条件变量对象属性attr。
注意,不是所有的实现都用得着process-shared属性。
条件变量的等待和信号发送
函数:
pthread_cond_wait (condition,mutex) pthread_cond_signal (condition) pthread_cond_broadcast (condition) |
使用:
- 在调用pthread_cond_wait()之前锁定互斥量失败,可致使其无法阻塞;
- 在调用pthread_cond_signal()之后解锁互斥量失败,则致使与之对应的pthread_cond_wait()函数无法完成,并仍保持阻塞状态。
实例分析
看到下面的一汪代码不要挠头,99行而已,之后会抽丝剥茧,目的是对条件变量的运行机制了解个大概:
/* ***************************************************************************** * 描述: * 应用Pthreads条件变量的实例代码,主线程创建三个线程,其中两个为“count”变量做 * 加法运算,第三个线程监视“count”的值。当“count”达到一个限定值,等待线程准备接收来 * 自于两个加法线程中一个的信号,等待 线程唤醒后更改“count”的值。程序继续运行直到加法 * 线程达到TCOUNT的值。最后,主程序打印出count的值。 ***************************************************************************** */ #include < pthread.h > #include < stdio.h > #include < stdlib.h > #define NUM_THREADS 3 #define TCOUNT 5 // 单线程轮询次数 #define COUNT_LIMIT 7 // 发送信号的次数 int count = 0 ; // 全局的累加量 pthread_mutex_t count_mutex; pthread_cond_t count_threshold_cv; void * inc_count( void * t) { int i; long my_id = ( long ) t; for (i = 0 ; i < TCOUNT; i ++ ) { pthread_mutex_lock( & count_mutex); count ++ ; /* * 检查count的值,如果条件满足就发信号给等待线程 * 注意,此处是用信号量锁定的。 * */ if (count < COUNT_LIMIT) { printf( " inc_count(): thread %ld, count = %d Threshold reached. " , my_id, count); pthread_cond_signal( & count_threshold_cv); printf( " Just sent signal.\n " ); } printf( " inc_count(): thread %ld, count = %d, unlocking mutex\n " , my_id, count); pthread_mutex_unlock( & count_mutex); /* 为线程轮询互斥锁增加延时 */ sleep( 1 ); } pthread_exit(NULL); } void * watch_count( void * t) { long my_id = ( long ) t; printf( " Starting watch_count(): thread %ld\n " , my_id); /* 锁定互斥量并等待信号,注意,pthread_cond_wait函数在等待时将自动以自动原子方式 * 解锁互斥量。还有,请注意,如果等待线程运行到等待函数之前已经满足COUNT_LIMIT的 * 条件判断,轮询会忽略掉等待函数, * */ while (count < COUNT_LIMIT) { pthread_mutex_lock( & count_mutex); printf( " watch_count(): thread %ld going into wait...\n " , my_id); pthread_cond_wait( & count_threshold_cv, & count_mutex); printf( " watch_count(): thread %ld Condition signal received.\n " , my_id); printf( " watch_count(): thread %ld count now = %d.\n " , my_id, count); pthread_mutex_unlock( & count_mutex); } pthread_exit(NULL); } int main( int argc, char * argv[]) { int i; long t1 = 1 , t2 = 2 , t3 = 3 ; pthread_t threads[ 3 ]; pthread_attr_t attr; /* 初始化互斥量和条件变量对象 */ pthread_mutex_init( & count_mutex, NULL); pthread_cond_init( & count_threshold_cv, NULL); /* 创建线程时设为可连接状态,便于移植 */ pthread_attr_init( & attr); pthread_attr_setdetachstate( & attr, PTHREAD_CREATE_JOINABLE); pthread_create( & threads[ 0 ], & attr, watch_count, ( void * ) t1); pthread_create( & threads[ 1 ], & attr, inc_count, ( void * ) t2); pthread_create( & threads[ 2 ], & attr, inc_count, ( void * ) t3); /* 等待所有线程完成 */ for (i = 1 ; i < NUM_THREADS; i ++ ) { pthread_join(threads[i], NULL); } /* 发送信号给监听线程 */ pthread_cond_signal( & count_threshold_cv); pthread_join(threads[ 0 ],NULL); printf( " Main(): Waited on %d threads. Final value of count = %d. Done.\n " , NUM_THREADS, count); /* 清除并退出 */ pthread_attr_destroy( & attr); pthread_mutex_destroy( & count_mutex); pthread_cond_destroy( & count_threshold_cv); pthread_exit(NULL); }
- 两个线程利用互斥量为count做加法运算,两个线程一起做了(2*TCOUNT=)10次运算;
- count值小于COUNT_LIMIT时,发送信号给监听线程;