转自:http://blog.csdn.net/lanmanck/article/details/6895322
来自:http://blog.csdn.net/woshixingaaa/article/details/6574220
这篇来分析spi子系统的建立过程。
嵌入式微处理器访问SPI设备有两种方式:使用GPIO模拟SPI接口的工作时序或者使用SPI控制器。使用GPIO模拟SPI接口的工作时序是非常容易实现的,但是会导致大量的时间耗费在模拟SPI接口的时序上,访问效率比较低,容易成为系统瓶颈。这里主要分析使用SPI控制器的情况。
这个是由sys文件系统导出的spi子系统在内核中的视图了。
首先了解一下Linux内核中的几个文件:spi.c也就是spi子系统的核心了,spi_s3c24xx.c是s3c24xx系列芯片的SPI controller驱动,它向更上层的SPI核心层(spi.c)提供接口用来控制芯片的SPI controller,是一个被其他驱动使用的驱动。而spidev.c是在核心层基础之上将SPI controller模拟成一个字符型的驱动,向文件系统提供标准的文件系统接口,用来操作对应的SPI controller。
下面我们来看看spi子系统是怎么注册进内核的:
- static int __init spi_init(void)
- {
- int status;
- buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
- if (!buf) {
- status = -ENOMEM;
- goto err0;
- }
- status = bus_register(&spi_bus_type);
- if (status < 0)
- goto err1;
- status = class_register(&spi_master_class);
- if (status < 0)
- goto err2;
- return 0;
- err2:
- bus_unregister(&spi_bus_type);
- err1:
- kfree(buf);
- buf = NULL;
- err0:
- return status;
- }
- postcore_initcall(spi_init);
这里注册了一个spi_bus_type,也就是一个spi总线,和一个spi_master的class。分别对应上图中sys/bus/下的spi目录和sys/class/下的spi_master目录。
下面来分析SPI controller驱动的注册与初始化过程,首先执行的是s3c24xx_spi_init。
- static int __init s3c24xx_spi_init(void)
- {
- return platform_driver_probe(&s3c24xx_spi_driver, s3c24xx_spi_probe);
- }
platform_driver_probe中完成了s3c24xx_spi_driver这个平台驱动的注册,相应的平台设备在devs.c中定义,在smdk2440_devices中添加&s3c_device_spi0,&s3c_device_spi1,这就生成了图中所示的s3c24xx-spi.0与s3c24xx-spi.1,当然了这图是在网上找的,不是我画的,所以是6410的。这里s3c24xx-spi.0表示s3c2440的spi controller的0号接口,s3c24xx-spi.1表示s3c2440的spi controller的1号接口。注册了s3c24xx_spi_driver后,赋值了平台驱动的probe函数为s3c24xx_spi_probe。所以当match成功后,调用s3c24xx_spi_probe,这里看其实现:
然后看这里是怎样注册spi主机控制器驱动的:
- int spi_register_master(struct spi_master *master)
- {
- 。。。。。。。。。。。。。。。。
-
- dev_set_name(&master->dev, "spi%u", master->bus_num);
- status = device_add(&master->dev);
- scan_boardinfo(master);
- }
这里跟踪scan_boardinfo函数:
- static void scan_boardinfo(struct spi_master *master)
- {
- struct boardinfo *bi;
- mutex_lock(&board_lock);
-
- list_for_each_entry(bi, &board_list, list) {
- struct spi_board_info *chip = bi->board_info;
- unsigned n;
-
- for (n = bi->n_board_info; n > 0; n--, chip++) {
- if (chip->bus_num != master->bus_num)
- continue;
- (void) spi_new_device(master, chip);
- }
- }
- mutex_unlock(&board_lock);
- }
在移植的时候我们会在mach-smdk2440.c中的smdk2440_machine_init中添加spi_register_board_info
这个函数完成了将spi_board_info交由boardinfo管理,并把boardinfo挂载到board_list链表上。也就是说在系统初始化的时候将spi_device交由到挂在board_list上的boardinfo管理,在spi controller的driver注册的时候不但注册这个主机控制器的驱动,还要遍历这个主机控制器的总线上的spi_device,将总线上的spi_device全部注册进内核。当注册进内核并且spi_driver已经注册的时候,如果总线match成功,则会调用spi_driver的probe函数,这个将在后边进行分析。
- int __init
- spi_register_board_info(struct spi_board_info const *info, unsigned n)
- {
- struct boardinfo *bi;
-
-
- bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
- if (!bi)
- return -ENOMEM;
- bi->n_board_info = n;
- memcpy(bi->board_info, info, n * sizeof *info);
-
-
- mutex_lock(&board_lock);
- list_add_tail(&bi->list, &board_list);
- mutex_unlock(&board_lock);
- return 0;
- }
看一下创建新设备的函数:
- struct spi_device *spi_new_device(struct spi_master *master,
- struct spi_board_info *chip)
- {
- struct spi_device *proxy;
- int status;
- proxy = spi_alloc_device(master);
- if (!proxy)
- return NULL;
-
-
- WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
-
- proxy->chip_select = chip->chip_select;
- proxy->max_speed_hz = chip->max_speed_hz;
- proxy->mode = chip->mode;
- proxy->irq = chip->irq;
-
- strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
- proxy->dev.platform_data = (void *) chip->platform_data;
- proxy->controller_data = chip->controller_data;
- proxy->controller_state = NULL;
-
- status = spi_add_device(proxy);
- if (status < 0) {
- spi_dev_put(proxy);
- return NULL;
- }
-
-
- return proxy;
- }
下面来看分配spi_alloc_device的函数,主要完成了分配spi_device,并初始化spi->dev的一些字段。
- struct spi_device *spi_alloc_device(struct spi_master *master)
- {
- struct spi_device *spi;
- struct device *dev = master->dev.parent;
- if (!spi_master_get(master))
- return NULL;
- spi = kzalloc(sizeof *spi, GFP_KERNEL);
- if (!spi) {
- dev_err(dev, "cannot alloc spi_device\n");
- spi_master_put(master);
- return NULL;
- }
- spi->master = master;
- spi->dev.parent = dev;
-
- spi->dev.bus = &spi_bus_type;
- spi->dev.release = spidev_release;
- device_initialize(&spi->dev);
- return spi;
- }
下面来看分配的这个spi_device是怎样注册进内核的:
- int spi_add_device(struct spi_device *spi)
- {
- static DEFINE_MUTEX(spi_add_lock);
- struct device *dev = spi->master->dev.parent;
- int status;
-
- if (spi->chip_select >= spi->master->num_chipselect) {
- dev_err(dev, "cs%d >= max %d\n",
- spi->chip_select,
- spi->master->num_chipselect);
- return -EINVAL;
- }
-
- dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
- spi->chip_select);
- mutex_lock(&spi_add_lock);
-
- if (bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev))
- != NULL) {
- dev_err(dev, "chipselect %d already in use\n",
- spi->chip_select);
- status = -EBUSY;
- goto done;
- }
- /对spi_device的时钟等进行设置/
- status = spi->master->setup(spi);
- if (status < 0) {
- dev_err(dev, "can't %s %s, status %d\n",
- "setup", dev_name(&spi->dev), status);
- goto done;
- }
-
- status = device_add(&spi->dev);
- if (status < 0)
- dev_err(dev, "can't %s %s, status %d\n",
- "add", dev_name(&spi->dev), status);
- else
- dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
-
-
- done:
- mutex_unlock(&spi_add_lock);
- return status;
- }
-
-
- static int s3c24xx_spi_setup(struct spi_device *spi)
- {
- 。。。。。。。。。。。。。。
- ret = s3c24xx_spi_setupxfer(spi, NULL);
- 。。。。。。。。。。。。。。
- }
-
-
- static int s3c24xx_spi_setupxfer(struct spi_device *spi,
- struct spi_transfer *t)
- {
- struct s3c24xx_spi *hw = to_hw(spi);
- unsigned int bpw;
- unsigned int hz;
- unsigned int div;
-
- bpw = t ? t->bits_per_word : spi->bits_per_word;
- hz = t ? t->speed_hz : spi->max_speed_hz;
-
-
- if (bpw != 8) {
- dev_err(&spi->dev, "invalid bits-per-word (%d)\n", bpw);
- return -EINVAL;
- }
-
- div = clk_get_rate(hw->clk) / hz;
-
-
-
-
-
-
- div /= 2;
-
-
- if (div > 0)
- div -= 1;
-
-
- if (div > 255)
- div = 255;
-
-
- dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", div, hz);
- writeb(div, hw->regs + S3C2410_SPPRE);
-
-
- spin_lock(&hw->bitbang.lock);
- if (!hw->bitbang.busy) {
- hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
-
- }
- spin_unlock(&hw->bitbang.lock);
-
-
- return 0;
- }
下面来看这个spi_driver是怎样注册的,又是与spi_device怎样match上的。
在spidev.c中:
- static int __init spidev_init(void)
- {
- int status;
- BUILD_BUG_ON(N_SPI_MINORS > 256);
- status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
- if (status < 0)
- return status;
- spidev_class = class_create(THIS_MODULE, "spidev");
- if (IS_ERR(spidev_class)) {
- unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
- return PTR_ERR(spidev_class);
- }
- status = spi_register_driver(&spidev_spi);
- if (status < 0) {
- class_destroy(spidev_class);
- unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
- }
- return status;
- }
注册了名为”spi”的字符驱动,然后注册了spidev_spi驱动,这个就是图中sys/Bus/Spi/Drivers/下的spidev。
- static struct spi_driver spidev_spi = {
- .driver = {
- .name = "spidev",
- .owner = THIS_MODULE,
- },
- .probe = spidev_probe,
- .remove = __devexit_p(spidev_remove),
- };
- static struct spi_driver spidev_spi = {
- .driver = {
- .name = "spidev",
- .owner = THIS_MODULE,
- },
- .probe = spidev_probe,
- .remove = __devexit_p(spidev_remove),
- };
这里来看__driver_attach这个函数,其中分别调用了driver_match_device,driver_probe_device函数。如果匹配成果调用probe函数,否则返回。
- static int __driver_attach(struct device *dev, void *data)
- {
- struct device_driver *drv = data;
- if (!driver_match_device(drv, dev))
- return 0;
-
- if (dev->parent)
- down(&dev->parent->sem);
- down(&dev->sem);
- if (!dev->driver)
- driver_probe_device(drv, dev);
- up(&dev->sem);
- if (dev->parent)
- up(&dev->parent->sem);
-
- return 0;
- }
匹配的时候调用的bus的match函数。
- struct bus_type spi_bus_type = {
- .name = "spi",
- .dev_attrs = spi_dev_attrs,
- .match = spi_match_device,
- .uevent = spi_uevent,
- .suspend = spi_suspend,
- .resume = spi_resume,
- };
- static int spi_match_device(struct device *dev, struct device_driver *drv)
- {
- const struct spi_device *spi = to_spi_device(dev);
-
-
- return strcmp(spi->modalias, drv->name) == 0;
- }
可以看到这里根据驱动和设备的名字进行匹配,匹配成功后调用驱动的probe函数。
- static int spi_drv_probe(struct device *dev)
- {
- const struct spi_driver *sdrv = to_spi_driver(dev->driver);
-
-
- return sdrv->probe(to_spi_device(dev));
- }
可以看大调用了具体的probe函数,这里实现了把spidev添加到device_list,这样这个虚拟的字符驱动就注册并初始化完毕。
(原文中贴的是spidev_remove函数,应该是作者笔误 ----转者)
static int __devinit spidev_probe(struct spi_device *spi)
{
struct spidev_data *spidev;
int status;
unsigned long minor;
/* Allocate driver data */
spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
if (!spidev)
return -ENOMEM;
/* Initialize the driver data */
spidev->spi = spi;
spin_lock_init(&spidev->spi_lock);
mutex_init(&spidev->buf_lock);
INIT_LIST_HEAD(&spidev->device_entry);
/* If we can allocate a minor number, hook up this device.
* Reusing minors is fine so long as udev or mdev is working.
*/
mutex_lock(&device_list_lock);
minor = find_first_zero_bit(minors, N_SPI_MINORS);
if (minor < N_SPI_MINORS) {
struct device *dev;
spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
dev = device_create(spidev_class, &spi->dev, spidev->devt,
spidev, "spidev%d.%d",
spi->master->bus_num, spi->chip_select);
status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
} else {
dev_dbg(&spi->dev, "no minor number available!\n");
status = -ENODEV;
}
if (status == 0) {
set_bit(minor, minors);
list_add(&spidev->device_entry, &device_list);
}
mutex_unlock(&device_list_lock);
if (status == 0)
spi_set_drvdata(spi, spidev);
else
kfree(spidev);
return status;
}
在spidev的注册函数中注册了文件操作集合file_operations,为用户空间提供了操作SPI controller的接口。
- static struct file_operations spidev_fops = {
- .owner = THIS_MODULE,
-
-
-
-
- .write = spidev_write,
- .read = spidev_read,
- .unlocked_ioctl = spidev_ioctl,
- .open = spidev_open,
- .release = spidev_release,
- };
到此为止spi子系统与spi_master,spi_device,spi_driver这个Linux设备驱动模型已经建立完了。