linux内核的链表一般都是双向循环链表,双向循环链表的效率是最高的,找头节点,尾节点,直接前驱,直接后继时间复杂度都是O(1),而使用单链表,单向循环链表或其他形式的链表是不能完成的。
linux内核链表最大特点就是它的通用性,不必因为结构体中的数据域的不通而单独为操作链表设计一套方案.
linux内核在linux/list.h文件中定义了内核通用链表list_head类型基本结构:
/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
struct list_head {
struct list_head *next, *prev;
};
list_head定义了一个双向链表。
然后对链表头进行初始化,可使用两种方法进行。
/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
struct list_head {
struct list_head *next, *prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name =LIST_HEAD_INIT(name)
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}
LIST_HEAD和INIT_LIST_HEAD都是对表头进行初始化,使next 和 prev指向自己。
**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
通过这个函数看这个链表的前节点和后节点是否相等判断是否为空。
插入
向一个链表插入有两种方式:一是在头节点后面插入新节点,二是在链表末尾插入新节点。
(1)在头节点后面插入新节点
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
#ifndef CONFIG_DEBUG_LIST
static inline void __list_add(struct list_head *new,
struct list_head *prev, struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
#else
extern void __list_add(struct list_head *new,
struct list_head *prev, struct list_head *next);
#endif
/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}
(2)在链表末尾插入新节点
/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
next->prev = prev;
prev->next = next;
}
删除
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = (void *)0xDEADBEEF;
entry->prev = (void *)0xBEEFDEAD;
}
#else
extern void list_del(struct list_head *entry);
#endif
遍历
/**
* list_first_entry - get the first element from a list
* @ptr: the list head to take the element from.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*
* Note, that list is expected to be not empty.
*/
#define list_first_entry(ptr, type, member) \
list_entry((ptr)->next, type, member)
从头节点的下一个节点开始遍历,一直末尾。
删除
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
#ifndef CONFIG_DEBUG_LIST
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = (void *)0xDEADBEEF;
entry->prev = (void *)0xBEEFDEAD;
}
#else
extern void list_del(struct list_head *entry);
#endif
测试代码
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/list.h>
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("List Module");
MODULE_ALIAS("List module");
struct student
{
char name[100];
int num;
struct list_head list;
};
struct student *pstudent;
struct student *tmp_student;
struct list_head student_list;
struct list_head *pos;
int mylist_init(void)
{
int i = 0;
INIT_LIST_HEAD(&student_list);
pstudent = kmalloc(sizeof(struct student)*5,GFP_KERNEL);
memset(pstudent,0,sizeof(struct student)*5);
for(i=0;i<5;i++)
{
sprintf(pstudent[i].name,"Student%d",i+1);
pstudent[i].num = i+1;
list_add( &(pstudent[i].list), &student_list);
}
list_for_each(pos,&student_list)
{
tmp_student = list_entry(pos,struct student,list);
printk("<0>student %d name: %s\n",tmp_student->num,tmp_student->name);
}
return 0;
}
void mylist_exit(void)
{
int i ;
/* 实验:将for换成list_for_each来遍历删除结点,观察要发生的现象,并考虑解决办法 */
for(i=0;i<5;i++)
{
list_del(&(pstudent[i].list));
}
kfree(pstudent);
}
module_init(mylist_init);
module_exit(mylist_exit);
这里采用头插法,也可改成为插法测试结果。