题目链接
题意:给定一个n*n的棋盘,有n个棋子在上面,现在要移动棋子,每一步代价是1,现在要把棋子移动到一行,一列,或者在主副对角线上,问最小代价
思路:二分图完美匹配,枚举每种情况,建边,边权为曼哈顿距离,然后km算法做完美匹配算出值即可,由于要求最小值所以边权传负数,这样做出来的值的负就是答案
代码:
#include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #include <algorithm> using namespace std; const int MAXNODE = 105; typedef int Type; const Type INF = 0x3f3f3f3f; struct KM { int n; Type g[MAXNODE][MAXNODE]; Type Lx[MAXNODE], Ly[MAXNODE], slack[MAXNODE]; int left[MAXNODE]; bool S[MAXNODE], T[MAXNODE]; void init(int n) { this->n = n; } void add_Edge(int u, int v, Type val) { g[u][v] = val; } bool dfs(int i) { S[i] = true; for (int j = 0; j < n; j++) { if (T[j]) continue; Type tmp = Lx[i] + Ly[j] - g[i][j]; if (!tmp) { T[j] = true; if (left[j] == -1 || dfs(left[j])) { left[j] = i; return true; } } else slack[j] = min(slack[j], tmp); } return false; } void update() { Type a = INF; for (int i = 0; i < n; i++) if (!T[i]) a = min(a, slack[i]); for (int i = 0; i < n; i++) { if (S[i]) Lx[i] -= a; if (T[i]) Ly[i] += a; } } Type km() { for (int i = 0; i < n; i++) { left[i] = -1; Lx[i] = -INF; Ly[i] = 0; for (int j = 0; j < n; j++) Lx[i] = max(Lx[i], g[i][j]); } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) slack[j] = INF; while (1) { for (int j = 0; j < n; j++) S[j] = T[j] = false; if (dfs(i)) break; else update(); } } Type ans = 0; for (int i = 0; i < n; i++) ans += g[left[i]][i]; return ans; } } gao; const int N = 20; int n, x[N], y[N]; int dis(int x1, int y1, int x2, int y2) { return abs(x1 - x2) + abs(y1 - y2); } int main() { int cas = 0; while (~scanf("%d", &n) && n) { gao.init(n); for (int i = 0; i < n; i++) { scanf("%d%d", &x[i], &y[i]); x[i]--; y[i]--; } int ans = -1000; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { gao.add_Edge(j, k, -dis(x[j], y[j], i, k)); } } ans = max(ans, gao.km()); } for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { gao.add_Edge(j, k, -dis(x[j], y[j], k, i)); } } ans = max(ans, gao.km()); } for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) gao.add_Edge(i, j, -dis(x[i], y[i], j, j)); ans = max(ans, gao.km()); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) gao.add_Edge(i, j, -dis(x[i], y[i], n - j - 1, j)); ans = max(ans, gao.km()); printf("Board %d: %d moves required.\n\n", ++cas, -ans); } return 0; }