Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18190 Accepted Submission(s): 5955
Problem Description
Now I think you have got an AC in Ignatius.L’s “Max Sum” problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 … Sx, … Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + … + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + … + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don’t want to write a special-judge module, so you don’t have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 … Sn.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
Author
JGShining(极光炫影)
Recommend
We have carefully selected several similar problems for you: 1059 1058 1227 1224 1422
Statistic | Submit | Discuss | Note
数据好像很弱 O(n^2)能过
dp[i][j][0] 表示前i个数组成j段,且不选入第i个数
dp[i][j][1]表示前i个数组成j段,且选入第i个数
dp[i][j][0] = max (dp[i - 1][j][1], dp[i - 1][j][0])
dp[i][j][1] = max (dp[i - 1][j][1], dp[i - 1][j - 1][0], dp[i - 1][j - 1][1]) + a[i];
对于j=1的情况,就是最大子段和
数据有点大,用下滚动数组
/************************************************************************* > File Name: dp14.cpp > Author: ALex > Mail: [email protected] > Created Time: 2015年02月13日 星期五 20时39分01秒 ************************************************************************/
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
const int N = 1000100;
int dp[2][N][2];
int arr[N];
int g[N];
int main ()
{
int m, n;
while (~scanf("%d%d", &m, &n))
{
memset (dp, -inf, sizeof(dp));
for (int i = 1; i <= n; ++i)
{
scanf("%d", &arr[i]);
}
dp[0][0][0] = 0;
g[0] = 0;
int tmp = -inf;
for (int i = 1; i <= n; ++i)
{
if (g[i - 1] + arr[i] > arr[i])
{
dp[i % 2][1][1] = g[i - 1] + arr[i];
g[i] = g[i - 1] + arr[i];
}
else
{
dp[i % 2][1][1] = arr[i];
g[i] = arr[i];
}
dp[i % 2][1][0] = tmp;
tmp = max (tmp, g[i]);
for (int j = 2; j <= m; ++j)
{
if (i < j)
{
break;
}
if (i - 1 >= j)
{
dp[i % 2][j][1] = max (dp[1 - (i % 2)][j - 1][0], max (dp[1 - (i % 2)][j][1], dp[1 - (i % 2)][j - 1][1])) + arr[i];
}
else
{
dp[i % 2][j][1] = max (dp[1 - (i % 2)][j - 1][0], dp[1 - (i % 2)][j - 1][1]) + arr[i];
}
if (i != j)
{
dp[i % 2][j][0] = max (dp[1 - (i % 2)][j][0], dp[1 - (i % 2)][j][1]);
}
else
{
dp[i % 2][j][0] = -inf;
}
}
}
printf("%d\n", max (dp[n % 2][m][0], dp[n % 2][m][1]));
}
return 0;
}