SerialPort类源代码分析

 

前几篇串口编程大致讲述了Windows下串口的大致操作,接下来分析流行的SerialPort类,它把Windows API封装好,方便开发利用

1、Win32下串口大致操作流程
(1)打开串口:CreateFile函数
(2)建立串口通信事件:CreateEvent函数
(3)初始化串口:SetCommState函数
(4)建立监视线程,即读写数据线程,因为我们不知道什么时候数据会到来,这里是一个异步事件
(5)写数据:WriteFile
(6)结束:关闭线程->停止WaitCommEvent->CloseHandle

2.SerialPort类的数据结构
大致了解操作流程后,先看一下SerialPort类,均在代码注释了
数据成员:

public: int m_nWriteSize; //要写入串口的数据大小 HANDLE m_hComm; //串口句柄 protected: // thread监视线程 CWinThread* m_Thread; // synchronisation objects //临界资源 CRITICAL_SECTION m_csCommunicationSync; //监视线程运行标志 BOOL m_bThreadAlive; // handles /*事件句柄*/ HANDLE m_hWriteEvent; HANDLE m_hShutdownEvent; // There is a general shutdown when the port is closed. //事件数组,包括一个写事件,接收事件,关闭事件 HANDLE m_hEventArray[3]; // structures OVERLAPPED m_ov; //异步I/O模型 COMMTIMEOUTS m_CommTimeouts; //超时设置 DCB m_dcb; //设备控制块 // owner window CWnd* m_pOwner; // misc UINT m_nPortNr; char* m_szWriteBuffer; //写缓冲区 DWORD m_dwCommEvents; // DWORD m_nWriteBufferSize; //写缓冲大小   

函数成员:

public: /*******************Port Operation***********************/ // port initialisation /*初始化串口*/ BOOL InitPort(CWnd* pPortOwner, UINT portnr = 1, UINT baud = 19200, char parity = 'N', UINT databits = 8, UINT stopbits = 1, DWORD dwCommEvents = EV_RXCHAR, UINT writebuffersize = 1024); //关闭端口 void ClosePort(); // start/stop comm watching //控制串口监视线程 BOOL StartMonitoring(); //开启 BOOL RestartMonitoring(); //复位 BOOL StopMonitoring(); //停止 DWORD GetWriteBufferSize();//获取写缓冲大小 DWORD GetCommEvents(); //获取事件 DCB GetDCB(); //获取DCB //写数据到串口 void WriteToPort(char* string); void WriteToPort(char* string,int n); void WriteToPort(LPCTSTR string); void WriteToPort(LPCTSTR string,int n); protected: /***************** protected memberfunctions **********************/ void ProcessErrorMessage(char* ErrorText); //线程函数 static UINT CommThread(LPVOID pParam); //接收字符 static void ReceiveChar(CSerialPort* port, COMSTAT comstat); //写字符 static void WriteChar(CSerialPort* port);   

3.串口操作

(1)初始化串口

流程:检查参数-->检测线程-->创建事件(监视线程)-->打开端口-->设置异步IO结构参数,详细见代码:  /*初始化串口*/ BOOL CSerialPort::InitPort(CWnd* pPortOwner, // the owner (CWnd) of the port (receives message) UINT portnr, // portnumber (1..4) UINT baud, // baudrate char parity, // parity UINT databits, // databits UINT stopbits, // stopbits DWORD dwCommEvents, // EV_RXCHAR, EV_CTS etc UINT writebuffersize) // size to the writebuffer { assert(portnr > 0 && portnr < 5); assert(pPortOwner != NULL); // if the thread is alive: Kill //线程在的话关断它 if (m_bThreadAlive) { do { SetEvent(m_hShutdownEvent); } while (m_bThreadAlive); TRACE("Thread ended/n"); } // create events //创建事件 if (m_ov.hEvent != NULL) ResetEvent(m_ov.hEvent); else m_ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL); if (m_hWriteEvent != NULL) ResetEvent(m_hWriteEvent); else m_hWriteEvent = CreateEvent(NULL, TRUE, FALSE, NULL); if (m_hShutdownEvent != NULL) ResetEvent(m_hShutdownEvent); else m_hShutdownEvent = CreateEvent(NULL, TRUE, FALSE, NULL); // initialize the event objects //事件数组初始化,设定优先级别 m_hEventArray[0] = m_hShutdownEvent; // highest priority m_hEventArray[1] = m_ov.hEvent; m_hEventArray[2] = m_hWriteEvent; // initialize critical section //初始化一个临界资源对象 InitializeCriticalSection(&m_csCommunicationSync); // set buffersize for writing and save the owner m_pOwner = pPortOwner; if (m_szWriteBuffer != NULL) delete [] m_szWriteBuffer; m_szWriteBuffer = new char[writebuffersize]; m_nPortNr = portnr; m_nWriteBufferSize = writebuffersize; m_dwCommEvents = dwCommEvents; BOOL bResult = FALSE; char *szPort = new char[50]; char *szBaud = new char[50]; // now it critical! /********************************************* 多个线程操作相同的数据时,一般是需要按顺序访问的,否则会引导数据错乱, 无法控制数据,变成随机变量。为解决这个问题,就需要引入互斥变量,让每个 线程都按顺序地访问变量。这样就需要使用EnterCriticalSection和LeaveCriticalSection函数。 **********************************************************************/ //进入临界区 EnterCriticalSection(&m_csCommunicationSync); // if the port is already opened: close it //端口已经打开的就关闭它 if (m_hComm != NULL) { CloseHandle(m_hComm); m_hComm = NULL; } // prepare port strings //串口参数 sprintf(szPort, "COM%d", portnr); sprintf(szBaud, "baud=%d parity=%c data=%d stop=%d", baud, parity, databits, stopbits); // get a handle to the port /**************************************************************** *通信程序在CreateFile处指定串口设备及相关的操作属性,再返回一个句柄, *该句柄将被用于后续的通信操作,并贯穿整个通信过程串口打开后,其属性 *被设置为默认值,根据具体需要,通过调用GetCommState(hComm,&&dcb)读取 *当前串口设备控制块DCB设置,修改后通过SetCommState(hComm,&&dcb)将其写 *入。运用ReadFile()与WriteFile()这两个API函数实现串口读写操作,若为异 *步通信方式,两函数中最后一个参数为指向OVERLAPPED结构的非空指针,在读 *写函数返回值为FALSE的情况下,调用GetLastError()函数,返回值为ERROR_IO_PENDING, *表明I/O操作悬挂,即操作转入后台继续执行。此时,可以用WaitForSingleObject() *来等待结束信号并设置最长等待时间 *****************************************************************/ m_hComm = CreateFile(szPort, // communication port string (COMX)串口号 GENERIC_READ | GENERIC_WRITE, // read/write types 可以读写 0, // comm devices must be opened with exclusive access独占方式打开串口 NULL, // no security attributes 无安全属性 OPEN_EXISTING, // comm devices must use OPEN_EXISTING FILE_FLAG_OVERLAPPED, // Async I/O 异步I/O 0); // template must be 0 for comm devices //如果创建不成功,错误处理 if (m_hComm == INVALID_HANDLE_VALUE) { // port not found delete [] szPort; delete [] szBaud; return FALSE; } // set the timeout values //设置超时上限(异步IO) m_CommTimeouts.ReadIntervalTimeout = 1000; m_CommTimeouts.ReadTotalTimeoutMultiplier = 1000; m_CommTimeouts.ReadTotalTimeoutConstant = 1000; m_CommTimeouts.WriteTotalTimeoutMultiplier = 1000; m_CommTimeouts.WriteTotalTimeoutConstant = 1000; // configure /*分别调用Windows API设置串口参数*/ if (SetCommTimeouts(m_hComm, &m_CommTimeouts)) //设置超时 { /******************************************************* 若对端口数据的响应时间要求较严格,可采用事件驱动方式。 事件驱动方式通过设置事件通知,当所希望的事件发生时,Windows 发出该事件已发生的通知,这与DOS环境下的中断方式很相似。Windows 定义了9种串口通信事件,较常用的有以下三种: EV_RXCHAR:接收到一个字节,并放入输入缓冲区; EV_TXEMPTY:输出缓冲区中的最后一个字符,发送出去; EV_RXFLAG:接收到事件字符(DCB结构中EvtChar成员),放入输入缓冲区 在用SetCommMask()指定了有用的事件后,应用程序可调用WaitCommEvent()来等待事 件的发生。SetCommMask(hComm,0)可使WaitCommEvent()中止。 **************************************************************/ if (SetCommMask(m_hComm, dwCommEvents)) //设置通信事件 { if (GetCommState(m_hComm, &m_dcb)) //获取当前DCB参数 { m_dcb.EvtChar = 'q'; //设置字件字符 m_dcb.fRtsControl = RTS_CONTROL_ENABLE; // set RTS bit high! if (BuildCommDCB(szBaud, &m_dcb)) //填写DCB结构 { if (SetCommState(m_hComm, &m_dcb)) //配置DCB ; // normal operation... continue else ProcessErrorMessage("SetCommState()"); } else ProcessErrorMessage("BuildCommDCB()"); } else ProcessErrorMessage("GetCommState()"); } else ProcessErrorMessage("SetCommMask()"); } else ProcessErrorMessage("SetCommTimeouts()"); delete [] szPort; delete [] szBaud; // flush the port //终止读写并清空接收和发送 PurgeComm(m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT); // release critical section //出临界区 LeaveCriticalSection(&m_csCommunicationSync); TRACE("Initialisation for communicationport %d completed./nUse Startmonitor to communicate./n", portnr); return TRUE; }

(2)监视线程的控制

先看比较简单的线程控制吧,主要有开启线程,复位和停止

//开始监视串口 BOOL CSerialPort::StartMonitoring() { if (!(m_Thread = AfxBeginThread(CommThread, this))) return FALSE; TRACE("Thread started/n"); return TRUE; } // // Restart the comm thread // //重启监视线程(挂起重启) BOOL CSerialPort::RestartMonitoring() { TRACE("Thread resumed/n"); m_Thread->ResumeThread(); return TRUE; } // // Suspend the comm thread // //挂起监视线程 BOOL CSerialPort::StopMonitoring() { TRACE("Thread suspended/n"); m_Thread->SuspendThread(); return TRUE; }   

(3)监视线程

我们把读写串口的操作全部交给监视线程,现在简单看一下监视线程的大致流程:

检查串口-->进入循环{WaitCommEvent(不阻塞询问)询问事件-->如果有事件来到-->到相应处理(关闭/读/写)}

详细代码如下:

 //监视串口函数 UINT CSerialPort::CommThread(LPVOID pParam) { // Cast the void pointer passed to the thread back to // a pointer of CSerialPort class CSerialPort *port = (CSerialPort*)pParam; // Set the status variable in the dialog class to // TRUE to indicate the thread is running. port->m_bThreadAlive = TRUE; // Misc. variables DWORD BytesTransfered = 0; DWORD Event = 0; DWORD CommEvent = 0; DWORD dwError = 0; COMSTAT comstat; BOOL bResult = TRUE; // Clear comm buffers at startup //检查串口是否打开 if (port->m_hComm) // check if the port is opened PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT); // begin forever loop. This loop will run as long as the thread is alive. //不断读取数据 for (;;) { // Make a call to WaitCommEvent(). This call will return immediatly // because our port was created as an async port (FILE_FLAG_OVERLAPPED // and an m_OverlappedStructerlapped structure specified). This call will cause the // m_OverlappedStructerlapped element m_OverlappedStruct.hEvent, which is part of the m_hEventArray to // be placed in a non-signeled state if there are no bytes available to be read, // or to a signeled state if there are bytes available. If this event handle // is set to the non-signeled state, it will be set to signeled when a // character arrives at the port. // we do this for each port! /******************************************************************** WaitCommEvent函数第3个参数1pOverlapped可以是一个OVERLAPPED结构的变量指针 ,也可以是NULL,当用NULL时,表示该函数是同步的,否则表示该函数是异步的。 调用WaitCommEvent时,如果异步操作不能立即完成,会立即返回FALSE,系统在 WaitCommEvent返回前将OVERLAPPED结构成员hEvent设为无信号状态,等到产生通信 事件时,系统将其置有信号 ***********************************************************************/ bResult = WaitCommEvent(port->m_hComm, &Event, &port->m_ov);//表示该函数是异步的 if (!bResult) { //如果WaitCommEvent返回Error为NULL,则查询错误信息 // If WaitCommEvent() returns FALSE, process the last error to determin // the reason.. switch (dwError = GetLastError()) { case ERROR_IO_PENDING: //正常情况,没有字符可读 { // This is a normal return value if there are no bytes // to read at the port. // Do nothing and continue break; } case 87: //系统错误 { // Under Windows NT, this value is returned for some reason. // I have not investigated why, but it is also a valid reply // Also do nothing and continue. break; } default: //发生其他错误 { // All other error codes indicate a serious error has // occured. Process this error. port->ProcessErrorMessage("WaitCommEvent()"); break; } } } else //WaitCommEvent()能正确返回 { // If WaitCommEvent() returns TRUE, check to be sure there are // actually bytes in the buffer to read. // // If you are reading more than one byte at a time from the buffer // (which this program does not do) you will have the situation occur // where the first byte to arrive will cause the WaitForMultipleObjects() // function to stop waiting. The WaitForMultipleObjects() function // resets the event handle in m_OverlappedStruct.hEvent to the non-signelead state // as it returns. // // If in the time between the reset of this event and the call to // ReadFile() more bytes arrive, the m_OverlappedStruct.hEvent handle will be set again // to the signeled state. When the call to ReadFile() occurs, it will // read all of the bytes from the buffer, and the program will // loop back around to WaitCommEvent(). // // At this point you will be in the situation where m_OverlappedStruct.hEvent is set, // but there are no bytes available to read. If you proceed and call // ReadFile(), it will return immediatly due to the async port setup, but // GetOverlappedResults() will not return until the next character arrives. // // It is not desirable for the GetOverlappedResults() function to be in // this state. The thread shutdown event (event 0) and the WriteFile() // event (Event2) will not work if the thread is blocked by GetOverlappedResults(). // // The solution to this is to check the buffer with a call to ClearCommError(). // This call will reset the event handle, and if there are no bytes to read // we can loop back through WaitCommEvent() again, then proceed. // If there are really bytes to read, do nothing and proceed. bResult = ClearCommError(port->m_hComm, &dwError, &comstat); if (comstat.cbInQue == 0) continue; } // end if bResult //主等待函数,会阻塞线程 // Main wait function. This function will normally block the thread // until one of nine events occur that require action. //等待3个事件:关断/读/写,有一个事件发生就返回 Event = WaitForMultipleObjects(3, //3个事件 port->m_hEventArray,//事件数组 FALSE, //有一个事件发生就返回 INFINITE); //超时时间 switch (Event) { case 0: { // Shutdown event. This is event zero so it will be // the higest priority and be serviced first. //关断事件,关闭串口 CloseHandle(port->m_hComm); port->m_hComm=NULL; port->m_bThreadAlive = FALSE; // Kill this thread. break is not needed, but makes me feel better. AfxEndThread(100); break; } case 1: // read event 将定义的各种消息发送出去 { //接收 GetCommMask(port->m_hComm, &CommEvent); if (CommEvent & EV_RXCHAR) // Receive character event from port. ReceiveChar(port, comstat); if (CommEvent & EV_CTS) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_CTS_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr); if (CommEvent & EV_BREAK) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_BREAK_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr); if (CommEvent & EV_ERR) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_ERR_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr); if (CommEvent & EV_RING) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RING_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr); if (CommEvent & EV_RXFLAG) ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RXFLAG_DETECTED, (WPARAM) 0, (LPARAM) port->m_nPortNr); break; } case 2: // write event发送数据 { // Write character event from port //写 WriteChar(port); break; } } // end switch } // close forever loop return 0; }

(4)读取数据操作

读取数据是一个异步操作,当有数据发来时,会触发读事件m_ov.hEvent,监视线程捕捉到事件后并获知是读事件,进入相关读处理,这里调用函数ReceiveChar

,ReceiveChar中调用ReadFile函数将串口数据读到Buffer缓冲中,相关代码如下:

 //接收数据 void CSerialPort::ReceiveChar(CSerialPort* port, COMSTAT comstat) { BOOL bRead = TRUE; BOOL bResult = TRUE; DWORD dwError = 0; DWORD BytesRead = 0; unsigned char RXBuff; for (;;) { // Gain ownership of the comm port critical section. // This process guarantees no other part of this program // is using the port object. EnterCriticalSection(&port->m_csCommunicationSync); // ClearCommError() will update the COMSTAT structure and // clear any other errors. //更新COMSTAT bResult = ClearCommError(port->m_hComm, &dwError, &comstat); LeaveCriticalSection(&port->m_csCommunicationSync); // start forever loop. I use this type of loop because I // do not know at runtime how many loops this will have to // run. My solution is to start a forever loop and to // break out of it when I have processed all of the // data available. Be careful with this approach and // be sure your loop will exit. // My reasons for this are not as clear in this sample // as it is in my production code, but I have found this // solutiion to be the most efficient way to do this. //所有字符均被读出,中断循环 if (comstat.cbInQue == 0) { // break out when all bytes have been read break; } EnterCriticalSection(&port->m_csCommunicationSync); if (bRead) { //串口读出,读出缓冲区中字节 bResult = ReadFile(port->m_hComm, // Handle to COMM port &RXBuff, // RX Buffer Pointer 1, // Read one byte &BytesRead, // Stores number of bytes read &port->m_ov); // pointer to the m_ov structure // deal with the error code //若返回错误,错误处理 if (!bResult) { switch (dwError = GetLastError()) { case ERROR_IO_PENDING: { // asynchronous i/o is still in progress // Proceed on to GetOverlappedResults(); //异步IO仍在进行 bRead = FALSE; break; } default: { //其他错误处理 // Another error has occured. Process this error. port->ProcessErrorMessage("ReadFile()"); break; } } } else { //ReadFile返回TRUE // ReadFile() returned complete. It is not necessary to call GetOverlappedResults() bRead = TRUE; } } // close if (bRead) //异步IO操作仍在进行,需要调用GetOverlappedResult查询 if (!bRead) { bRead = TRUE; bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port &port->m_ov, // Overlapped structure &BytesRead, // Stores number of bytes read TRUE); // Wait flag // deal with the error code if (!bResult) { port->ProcessErrorMessage("GetOverlappedResults() in ReadFile()"); } } // close if (!bRead) LeaveCriticalSection(&port->m_csCommunicationSync); // notify parent that a byte was received ::SendMessage((port->m_pOwner)->m_hWnd, WM_COMM_RXCHAR, (WPARAM) RXBuff, (LPARAM) port->m_nPortNr); } // end forever loop }

(5)写数据

也是由监视线程操作,不过触发事件交给主线程来触发,函数是WriteToPort

// // Write a string to the port // void CSerialPort::WriteToPort(char* string) { assert(m_hComm != 0); //写进写缓冲区 memset(m_szWriteBuffer, 0, sizeof(m_szWriteBuffer)); strcpy(m_szWriteBuffer, string); m_nWriteSize=strlen(string); // set event for write SetEvent(m_hWriteEvent); }

线程调用的函数WriteChar,把缓冲里的数据写到串口中,期间调用WriteFile

详细代码:

//写数据 void CSerialPort::WriteChar(CSerialPort* port) { BOOL bWrite = TRUE; BOOL bResult = TRUE; DWORD BytesSent = 0; ResetEvent(port->m_hWriteEvent); //复位写事件句柄 // Gain ownership of the critical section EnterCriticalSection(&port->m_csCommunicationSync); if (bWrite) { // Initailize variables port->m_ov.Offset = 0; port->m_ov.OffsetHigh = 0; // Clear buffer PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT); //串口写入 bResult = WriteFile(port->m_hComm, // Handle to COMM Port port->m_szWriteBuffer, // Pointer to message buffer in calling finction // strlen((char*)port->m_szWriteBuffer), // Length of message to send port->m_nWriteSize, // Length of message to send &BytesSent, // Where to store the number of bytes sent &port->m_ov); // Overlapped structure // deal with any error codes if (!bResult) { DWORD dwError = GetLastError(); switch (dwError) { case ERROR_IO_PENDING: { // continue to GetOverlappedResults() BytesSent = 0; bWrite = FALSE; break; } default: { // all other error codes port->ProcessErrorMessage("WriteFile()"); } } } else { LeaveCriticalSection(&port->m_csCommunicationSync); } } // end if(bWrite) if (!bWrite) { bWrite = TRUE; bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port &port->m_ov, // Overlapped structure &BytesSent, // Stores number of bytes sent TRUE); // Wait flag LeaveCriticalSection(&port->m_csCommunicationSync); // deal with the error code // if (!bResult) { // port->ProcessErrorMessage("GetOverlappedResults() in WriteFile()"); } } // end if (!bWrite) //Verify that the data size send equals what we tried to send if (BytesSent != port->m_nWriteSize) // Length of message to send) { TRACE("WARNING: WriteFile() error.. Bytes Sent: %d; Message Length: %d/n", BytesSent, strlen((char*)port->m_szWriteBuffer)); } // ::SendMessage((port->m_pOwner)->m_hWnd, WM_COMM_TXEMPTY_DETECTED, (WPARAM) RXBuff, (LPARAM) port->m_nPortNr); // ::SendMessage((port->m_pOwner)->m_hWnd, WM_COMM_TXEMPTY_DETECTED,0,(LPARAM) port->m_nPortNr); }

(6)其他操作

其他比如获取DCB,关闭等,比较简单,不做分析

代码如下:

// // Return the device control block // DCB CSerialPort::GetDCB() { return m_dcb; } // // Return the communication event masks // DWORD CSerialPort::GetCommEvents() { return m_dwCommEvents; } // // Return the output buffer size // DWORD CSerialPort::GetWriteBufferSize() { return m_nWriteBufferSize; } void CSerialPort::ClosePort() { SetEvent(m_hShutdownEvent); }

好了,SerialPort代码分析到此为止,我水平有限,分析可能有不少问题,欢迎大家指


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/benny_cen/archive/2009/03/29/4033517.aspx

你可能感兴趣的:(thread,null,buffer,character,代码分析,structure)